IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v178y2019icp676-684.html
   My bibliography  Save this article

Effect of compression ratio on combustion, performance, and emission characteristics of compression ignition engine fueled with palm (B20) biodiesel blend

Author

Listed:
  • Rosha, Pali
  • Mohapatra, Saroj Kumar
  • Mahla, Sunil Kumar
  • Cho, HaengMuk
  • Chauhan, Bhupendra Singh
  • Dhir, Amit

Abstract

Limited fossil fuel reserves led to focus on alternatives fuels for combustion engines. Several studies reported optimal (20%) biodiesel blend for utility in compression ignition engine at constant compression ratio. Literature lacks on the study of palm-based biodiesel in blended form at varying engine compression ratios. In this study, an initiative was undertaken to study the effect of variable compression ratio (16:1, 17:1 and 18:1) on various engine characteristics by fuelling 20% palm biodiesel blending compression ignition engine. The ignition delay period decreased, whereas the peak cylinder pressure and brake thermal efficiency increased with increase in the engine compression ratio from 16:1 to 18:1. At 3.5 bar bmep, brake thermal efficiency values were observed to be 28.9, 30.8 and 33.8% at 16:1, 17:1 and 18:1 CRs, respectively in B20 fuel. Moreover, increasing compression ratio from 16:1 to 18:1, the average reduction in emissions of hydrocarbon, carbon monoxide and smoke opacity were observed to be 47.8, 41.0 and 35.7%, respectively whereas, oxides of nitrogen emissions increased by 41.1%. Thus, it is inferred that B20 fuel performed well at high engine compression ratio.

Suggested Citation

  • Rosha, Pali & Mohapatra, Saroj Kumar & Mahla, Sunil Kumar & Cho, HaengMuk & Chauhan, Bhupendra Singh & Dhir, Amit, 2019. "Effect of compression ratio on combustion, performance, and emission characteristics of compression ignition engine fueled with palm (B20) biodiesel blend," Energy, Elsevier, vol. 178(C), pages 676-684.
  • Handle: RePEc:eee:energy:v:178:y:2019:i:c:p:676-684
    DOI: 10.1016/j.energy.2019.04.185
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219308242
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.04.185?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mahla, S.K. & Dhir, Amit & Gill, Kanwar J.S. & Cho, Haeng Muk & Lim, Hee Chang & Chauhan, Bhupendra Singh, 2018. "Influence of EGR on the simultaneous reduction of NOx-smoke emissions trade-off under CNG-biodiesel dual fuel engine," Energy, Elsevier, vol. 152(C), pages 303-312.
    2. Xue, Jinlin & Grift, Tony E. & Hansen, Alan C., 2011. "Effect of biodiesel on engine performances and emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1098-1116, February.
    3. Ramadhas, A.S. & Muraleedharan, C. & Jayaraj, S., 2005. "Performance and emission evaluation of a diesel engine fueled with methyl esters of rubber seed oil," Renewable Energy, Elsevier, vol. 30(12), pages 1789-1800.
    4. Rosha, Pali & Mohapatra, Saroj Kumar & Mahla, Sunil Kumar & Dhir, Amit, 2019. "Hydrogen enrichment of biogas via dry and autothermal-dry reforming with pure nickel (Ni) nanoparticle," Energy, Elsevier, vol. 172(C), pages 733-739.
    5. Szabados, György & Bereczky, Ákos & Ajtai, Tibor & Bozóki, Zoltán, 2018. "Evaluation analysis of particulate relevant emission of a diesel engine running on fossil diesel and different biofuels," Energy, Elsevier, vol. 161(C), pages 1139-1153.
    6. Qi, D.H. & Bae, C. & Feng, Y.M. & Jia, C.C. & Bian, Y.Z., 2013. "Preparation, characterization, engine combustion and emission characteristics of rapeseed oil based hybrid fuels," Renewable Energy, Elsevier, vol. 60(C), pages 98-106.
    7. Pramanik, K, 2003. "Properties and use of jatropha curcas oil and diesel fuel blends in compression ignition engine," Renewable Energy, Elsevier, vol. 28(2), pages 239-248.
    8. Chauhan, Bhupendra Singh & Kumar, Naveen & Du Jun, Yong & Lee, Kum Bae, 2010. "Performance and emission study of preheated Jatropha oil on medium capacity diesel engine," Energy, Elsevier, vol. 35(6), pages 2484-2492.
    9. Muralidharan, K. & Vasudevan, D., 2011. "Performance, emission and combustion characteristics of a variable compression ratio engine using methyl esters of waste cooking oil and diesel blends," Applied Energy, Elsevier, vol. 88(11), pages 3959-3968.
    10. Datta, Ambarish & Mandal, Bijan Kumar, 2016. "A comprehensive review of biodiesel as an alternative fuel for compression ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 799-821.
    11. Rajak, Upendra & Nashine, Prerana & Verma, Tikendra Nath, 2019. "Assessment of diesel engine performance using spirulina microalgae biodiesel," Energy, Elsevier, vol. 166(C), pages 1025-1036.
    12. Qi, D.H. & Geng, L.M. & Chen, H. & Bian, Y.ZH. & Liu, J. & Ren, X.CH., 2009. "Combustion and performance evaluation of a diesel engine fueled with biodiesel produced from soybean crude oil," Renewable Energy, Elsevier, vol. 34(12), pages 2706-2713.
    13. Muralidharan, K. & Vasudevan, D. & Sheeba, K.N., 2011. "Performance, emission and combustion characteristics of biodiesel fuelled variable compression ratio engine," Energy, Elsevier, vol. 36(8), pages 5385-5393.
    14. Chauhan, Bhupendra Singh & Singh, Ram Kripal & Cho, H.M. & Lim, H.C., 2016. "Practice of diesel fuel blends using alternative fuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1358-1368.
    15. Rosha, Pali & Dhir, Amit & Mohapatra, Saroj Kumar, 2018. "Influence of gaseous fuel induction on the various engine characteristics of a dual fuel compression ignition engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3333-3349.
    16. Labecki, L. & Cairns, A. & Xia, J. & Megaritis, A. & Zhao, H. & Ganippa, L.C., 2012. "Combustion and emission of rapeseed oil blends in diesel engine," Applied Energy, Elsevier, vol. 95(C), pages 139-146.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abhishek Sharma & Harveer Singh Pali & Manish Kumar & Nishant Kumar Singh & Erween Abd Rahim & Yashvir Singh & Naveen Kumar Gupta, 2024. "Effect of α-aluminium oxide nano additives with Sal biodiesel blend as a potential alternative fuel for existing DI diesel engine," Energy & Environment, , vol. 35(2), pages 663-691, March.
    2. Omojola Awogbemi & Daramy Vandi Von Kallon & Emmanuel Idoko Onuh & Victor Sunday Aigbodion, 2021. "An Overview of the Classification, Production and Utilization of Biofuels for Internal Combustion Engine Applications," Energies, MDPI, vol. 14(18), pages 1-43, September.
    3. Mohammed Kamil & Fatima M. Almarashda, 2023. "Economic Viability and Engine Performance Evaluation of Biodiesel Derived from Desert Palm Date Seeds," Energies, MDPI, vol. 16(3), pages 1-22, February.
    4. Kumar, A. Naresh & Kishore, P.S. & Raju, K. Brahma & Ashok, B. & Vignesh, R. & Jeevanantham, A.K. & Nanthagopal, K. & Tamilvanan, A., 2020. "Decanol proportional effect prediction model as additive in palm biodiesel using ANN and RSM technique for diesel engine," Energy, Elsevier, vol. 213(C).
    5. Vallapudi Dhana Raju & Ibham Veza & Harish Venu & Manzoore Elahi M. Soudagar & M. A. Kalam & Tansir Ahamad & Prabhu Appavu & Jayashri N. Nair & S. M. Ashrafur Rahman, 2023. "Comprehensive Analysis of Compression Ratio, Exhaust Gas Recirculation, and Pilot Fuel Injection in a Diesel Engine Fuelled with Tamarind Biodiesel," Sustainability, MDPI, vol. 15(21), pages 1-21, October.
    6. Hosseinzadeh-Bandbafha, Homa & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Orooji, Yasin & Shahbeik, Hossein & Mahian, Omid & Karimi-Maleh, Hassan & Kalam, Md Abul & Salehi Jouzani, Gholamreza & M, 2023. "Applications of nanotechnology in biodiesel combustion and post-combustion stages," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    7. Rami Y. Dahham & Haiqiao Wei & Jiaying Pan, 2022. "Improving Thermal Efficiency of Internal Combustion Engines: Recent Progress and Remaining Challenges," Energies, MDPI, vol. 15(17), pages 1-60, August.
    8. Vinodkumar, V. & Karthikeyan, A., 2022. "Effect of manifold injection of n-decanol on neem biodiesel fuelled CI engine," Energy, Elsevier, vol. 241(C).
    9. How, H.G. & Teoh, Y.H. & Krishnan, B. Navaneetha & Le, T.D. & Nguyen, H.T. & Prabhu, C., 2021. "Prediction of optimum Palm Oil Methyl Ester fuel blend for compression ignition engine using Response Surface Methodology," Energy, Elsevier, vol. 234(C).
    10. Solmaz, Hamit & Ardebili, Seyed Mohammad Safieddin & Calam, Alper & Yılmaz, Emre & İpci, Duygu, 2021. "Prediction of performance and exhaust emissions of a CI engine fueled with multi-wall carbon nanotube doped biodiesel-diesel blends using response surface method," Energy, Elsevier, vol. 227(C).
    11. Adhirath Mandal & HaengMuk Cho & Bhupendra Singh Chauhan, 2022. "Experimental Investigation of Multiple Fry Waste Soya Bean Oil in an Agricultural CI Engine," Energies, MDPI, vol. 15(9), pages 1-14, April.
    12. Rajesh, K. & Natarajan, M.P. & Devan, P.K. & Ponnuvel, S., 2021. "Coconut fatty acid distillate as novel feedstock for biodiesel production and its characterization as a fuel for diesel engine," Renewable Energy, Elsevier, vol. 164(C), pages 1424-1435.
    13. Nguyen Xuan Khoa & Ocktaeck Lim, 2022. "A Review of the External and Internal Residual Exhaust Gas in the Internal Combustion Engine," Energies, MDPI, vol. 15(3), pages 1-21, February.
    14. Kulandaivel Duraisamy & Rahamathullah Ismailgani & Sathiyagnanam Amudhavalli Paramasivam & Gopal Kaliyaperumal & Damodharan Dillikannan, 2021. "Emission profiling of a common rail direct injection diesel engine fueled with hydrocarbon fuel extracted from waste high density polyethylene as a partial replacement for diesel with some modificatio," Energy & Environment, , vol. 32(3), pages 481-505, May.
    15. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2023. "Advanced strategies to reduce harmful nitrogen-oxide emissions from biodiesel fueled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    16. Ağbulut, Ümit & Sathish, T. & Kiong, Tiong Sieh & Sambath, S. & Mahendran, G. & Kandavalli, Sumanth Ratna & Sharma, P. & Gunasekar, T. & Kumar, P Suresh & Saravanan, R., 2024. "Production of waste soybean oil biodiesel with various catalysts, and the catalyst role on the CI engine behaviors," Energy, Elsevier, vol. 290(C).
    17. Adhirath Mandal & Haengmuk Cho & Bhupendra Singh Chauhan, 2021. "ANN Prediction of Performance and Emissions of CI Engine Using Biogas Flow Variation," Energies, MDPI, vol. 14(10), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    2. Tesfa, B. & Mishra, R. & Zhang, C. & Gu, F. & Ball, A.D., 2013. "Combustion and performance characteristics of CI (compression ignition) engine running with biodiesel," Energy, Elsevier, vol. 51(C), pages 101-115.
    3. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    4. Dong Lin Loo & Yew Heng Teoh & Heoy Geok How & Jun Sheng Teh & Liviu Catalin Andrei & Slađana Starčević & Farooq Sher, 2021. "Applications Characteristics of Different Biodiesel Blends in Modern Vehicles Engines: A Review," Sustainability, MDPI, vol. 13(17), pages 1-31, August.
    5. Rahman, S.M. Ashrafur & Masjuki, H.H. & Kalam, M.A. & Sanjid, A. & Abedin, M.J., 2014. "Assessment of emission and performance of compression ignition engine with varying injection timing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 221-230.
    6. Oumer, A.N. & Hasan, M.M. & Baheta, Aklilu Tesfamichael & Mamat, Rizalman & Abdullah, A.A., 2018. "Bio-based liquid fuels as a source of renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 82-98.
    7. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K. & Hazrat, M.A., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel – Part 2: Properties, performance and emission characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1129-1146.
    8. Muralidharan, K. & Vasudevan, D. & Sheeba, K.N., 2011. "Performance, emission and combustion characteristics of biodiesel fuelled variable compression ratio engine," Energy, Elsevier, vol. 36(8), pages 5385-5393.
    9. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Atabani, A.E. & Shahabuddin, M. & Palash, S.M. & Hazrat, M.A., 2013. "Effect of biodiesel from various feedstocks on combustion characteristics, engine durability and materials compatibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 441-455.
    10. Gonca, Guven & Dobrucali, Erinc, 2016. "Theoretical and experimental study on the performance of a diesel engine fueled with diesel–biodiesel blends," Renewable Energy, Elsevier, vol. 93(C), pages 658-666.
    11. Subramaniam, D. & Murugesan, A. & Avinash, A. & Kumaravel, A., 2013. "Bio-diesel production and its engine characteristics—An expatiate view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 361-370.
    12. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, Rizalman & Sidik, Nor Azwadi Che & Azmi, W.H., 2017. "The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 307-331.
    13. Mofijur, M. & Atabani, A.E. & Masjuki, H.H. & Kalam, M.A. & Masum, B.M., 2013. "A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 391-404.
    14. Chattopadhyay, Soham & Sen, Ramkrishna, 2013. "Fuel properties, engine performance and environmental benefits of biodiesel produced by a green process," Applied Energy, Elsevier, vol. 105(C), pages 319-326.
    15. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    16. Wei, L. & Cheung, C.S. & Ning, Z., 2017. "Influence of waste cooking oil biodiesel on combustion, unregulated gaseous emissions and particulate emissions of a direct-injection diesel engine," Energy, Elsevier, vol. 127(C), pages 175-185.
    17. Mardhiah, H. Haziratul & Ong, Hwai Chyuan & Masjuki, H.H. & Lim, Steven & Lee, H.V., 2017. "A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1225-1236.
    18. E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.
    19. Altarazi, Yazan S.M. & Abu Talib, Abd Rahim & Yu, Jianglong & Gires, Ezanee & Abdul Ghafir, Mohd Fahmi & Lucas, John & Yusaf, Talal, 2022. "Effects of biofuel on engines performance and emission characteristics: A review," Energy, Elsevier, vol. 238(PC).
    20. Hasan, M.M. & Rahman, M.M., 2017. "Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 938-948.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:178:y:2019:i:c:p:676-684. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.