IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2024i1p108-d1557067.html
   My bibliography  Save this article

Numerical Investigation on the Applicability of Variable Compression Ratio in a Marine Two-Stroke Dual-Fuel Engine for Fuel Economy Improvement

Author

Listed:
  • Haosheng Shen

    (Marine Engineering College, Dalian Maritime University, Dalian 116026, China)

  • Daoyi Lu

    (Marine Engineering College, Dalian Maritime University, Dalian 116026, China)

Abstract

Marine two-stroke dual-fuel (DF) engines with a low-pressure gas concept normally face the problem of inferior fuel economy in diesel mode, mainly due to their lower compression ratio. To address this issue, a numerical study is performed to investigate the applicability of variable compression ratio (VCR) in a marine two-stroke DF engine, aiming at improving fuel economy in diesel mode. First, an engine simulation model is established and validated. Then, parametric investigation is performed to obtain insights on the effects of VCR on engine combustion, performance, and emissions. Finally, regression models of selected engine response variables are determined based on the response surface methodology (RSM), which are then optimized by particle swarm optimization (PSO) to obtain the optimal solution of engine setting parameters. The results show that with the application of VCR, the brake specific fuel consumption (BSFC) decreases by 9.65, 11.38, 11.13, and 11.27% at 25, 50, 75, and 100% maximum continuous rating (MCR), respectively. Meanwhile, the nitrogen oxides (NOx) emissions are maintained at the original levels, and the engine’s operating parameters are within specified limits. This study contributes to the delineation of the benefits and limits of VCR and provides a feasible method to facilitate the implementation of VCR in marine engines.

Suggested Citation

  • Haosheng Shen & Daoyi Lu, 2024. "Numerical Investigation on the Applicability of Variable Compression Ratio in a Marine Two-Stroke Dual-Fuel Engine for Fuel Economy Improvement," Energies, MDPI, vol. 18(1), pages 1-41, December.
  • Handle: RePEc:gam:jeners:v:18:y:2024:i:1:p:108-:d:1557067
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/1/108/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/1/108/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2024:i:1:p:108-:d:1557067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.