IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v290y2024ics036054422303551x.html
   My bibliography  Save this article

Production of waste soybean oil biodiesel with various catalysts, and the catalyst role on the CI engine behaviors

Author

Listed:
  • Ağbulut, Ümit
  • Sathish, T.
  • Kiong, Tiong Sieh
  • Sambath, S.
  • Mahendran, G.
  • Kandavalli, Sumanth Ratna
  • Sharma, P.
  • Gunasekar, T.
  • Kumar, P Suresh
  • Saravanan, R.

Abstract

The soybean oil wastes are disposed of after being used multiple times (maximum utilization) in the various food processing industries. Disposal of such waste are harmful to the environment and human. Hence, this investigation aims to use such wastes are used for producing alternate fuels for diesel engines. The biodiesel produced from the soybean waste cooking oil by transesterification process with different hybrid catalysts such as the membrane of Poly-acrylonitrile nanofibrous (MPANF), Alkyl-celite (AC), Iron oxide (IO-II) and Ni-doped ZnO (NDZ). The transesterification process variables like flow velocities varied from 0.3 to 1.5 mL/min and the reaction time varied from 15 to 75 h. The influence of such variables was investigated. The best two yields of waste soybean oil (BDWSBO) with the use of IO-II and AC catalysts respectively at 1.5 mL/min of flow rate at a 75-h reaction time, were considered for preparing further blends with diesel of 25 vol% and 50 vol% (Total 4 fuel varieties other than plain diesel). The test results revealed that a blend of 25 % diesel fuel with 75 % IO-II -used BDWSBO has 30.05 % BTE, which is nearer to diesel fuel (30.81 %). This blend has 17.96 % lesser smoke opacity than diesel fuel. Therefore, this 25 % diesel fuel with 75 % IO-II -used BDWSBO blend is recommended for higher production biodiesel and application in the IC engine as an alternate fuel without any modifications.

Suggested Citation

  • Ağbulut, Ümit & Sathish, T. & Kiong, Tiong Sieh & Sambath, S. & Mahendran, G. & Kandavalli, Sumanth Ratna & Sharma, P. & Gunasekar, T. & Kumar, P Suresh & Saravanan, R., 2024. "Production of waste soybean oil biodiesel with various catalysts, and the catalyst role on the CI engine behaviors," Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:energy:v:290:y:2024:i:c:s036054422303551x
    DOI: 10.1016/j.energy.2023.130157
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422303551X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.130157?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rosha, Pali & Mohapatra, Saroj Kumar & Mahla, Sunil Kumar & Cho, HaengMuk & Chauhan, Bhupendra Singh & Dhir, Amit, 2019. "Effect of compression ratio on combustion, performance, and emission characteristics of compression ignition engine fueled with palm (B20) biodiesel blend," Energy, Elsevier, vol. 178(C), pages 676-684.
    2. Gad, M.S. & Panchal, Hitesh & Ağbulut, Ümit, 2022. "Waste to Energy: An experimental comparison of burning the waste-derived bio-oils produced by transesterification and pyrolysis methods," Energy, Elsevier, vol. 242(C).
    3. Hoang, Anh Tuan, 2019. "Experimental study on spray and emission characteristics of a diesel engine fueled with preheated bio-oils and diesel fuel," Energy, Elsevier, vol. 171(C), pages 795-808.
    4. Hosseinzadeh-Bandbafha, Homa & Tan, Yie Hua & Kansedo, Jibrail & Mubarak, N.M. & Liew, Rock Keey & Yek, Peter Nai Yuh & Aghbashlo, Mortaza & Ng, Hui Suan & Chong, William Woei Fong & Lam, Su Shiung & , 2023. "Assessing biodiesel production using palm kernel shell-derived sulfonated magnetic biochar from the life cycle assessment perspective," Energy, Elsevier, vol. 282(C).
    5. Adhirath Mandal & HaengMuk Cho & Bhupendra Singh Chauhan, 2022. "Experimental Investigation of Multiple Fry Waste Soya Bean Oil in an Agricultural CI Engine," Energies, MDPI, vol. 15(9), pages 1-14, April.
    6. El-Sheekh, Mostafa M. & Bedaiwy, Mohammed Y. & El-Nagar, Aya A. & ElKelawy, Medhat & Alm-Eldin Bastawissi, Hagar, 2022. "Ethanol biofuel production and characteristics optimization from wheat straw hydrolysate: Performance and emission study of DI-diesel engine fueled with diesel/biodiesel/ethanol blends," Renewable Energy, Elsevier, vol. 191(C), pages 591-607.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammed Kamil & Fatima M. Almarashda, 2023. "Economic Viability and Engine Performance Evaluation of Biodiesel Derived from Desert Palm Date Seeds," Energies, MDPI, vol. 16(3), pages 1-22, February.
    2. Solmaz, Hamit & Ardebili, Seyed Mohammad Safieddin & Calam, Alper & Yılmaz, Emre & İpci, Duygu, 2021. "Prediction of performance and exhaust emissions of a CI engine fueled with multi-wall carbon nanotube doped biodiesel-diesel blends using response surface method," Energy, Elsevier, vol. 227(C).
    3. Adhirath Mandal & HaengMuk Cho & Bhupendra Singh Chauhan, 2022. "Experimental Investigation of Multiple Fry Waste Soya Bean Oil in an Agricultural CI Engine," Energies, MDPI, vol. 15(9), pages 1-14, April.
    4. Tuan Hoang, Anh & Viet Pham, Van, 2021. "2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    5. El-Shafay, A.S. & Ağbulut, Ümit & Attia, El-Awady & Touileb, Kamel Lounes & Gad, M.S., 2023. "Waste to energy: Production of poultry-based fat biodiesel and experimental assessment of its usability on engine behaviors," Energy, Elsevier, vol. 262(PB).
    6. Adhirath Mandal & Dowan Cha & HaengMuk Cho, 2023. "Impact of Waste Fry Biofuel on Diesel Engine Performance and Emissions," Energies, MDPI, vol. 16(9), pages 1-23, April.
    7. Van Hai Nguyen & Duc Thiep Cao & Thi Hien Do, 2019. "Research And Calculation Of The Biogas Fuel Supply System For A Small Marine Diesel Engine," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(1), pages 64-70, January.
    8. Muteeb Ul Haq & Ali Turab Jafry & Saad Ahmad & Taqi Ahmad Cheema & Munib Qasim Ansari & Naseem Abbas, 2022. "Recent Advances in Fuel Additives and Their Spray Characteristics for Diesel-Based Blends," Energies, MDPI, vol. 15(19), pages 1-30, October.
    9. Adhirath Mandal & Haengmuk Cho & Bhupendra Singh Chauhan, 2021. "ANN Prediction of Performance and Emissions of CI Engine Using Biogas Flow Variation," Energies, MDPI, vol. 14(10), pages 1-18, May.
    10. Omojola Awogbemi & Daramy Vandi Von Kallon & Emmanuel Idoko Onuh & Victor Sunday Aigbodion, 2021. "An Overview of the Classification, Production and Utilization of Biofuels for Internal Combustion Engine Applications," Energies, MDPI, vol. 14(18), pages 1-43, September.
    11. How, H.G. & Teoh, Y.H. & Krishnan, B. Navaneetha & Le, T.D. & Nguyen, H.T. & Prabhu, C., 2021. "Prediction of optimum Palm Oil Methyl Ester fuel blend for compression ignition engine using Response Surface Methodology," Energy, Elsevier, vol. 234(C).
    12. Navaneetha Krishnan Balakrishnan & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Huu Tho Nguyen, 2023. "An Experimental Investigation on the Characteristics of a Compression Ignition Engine Fuelled by Diesel-Palm Biodiesel–Ethanol/Propanol Based Ternary Blends," Energies, MDPI, vol. 16(2), pages 1-18, January.
    13. Hoang, Anh Tuan & Murugesan, Parthasarathy & PV, Elumalai & Balasubramanian, Dhinesh & Parida, Satyajeet & Priya Jayabal, Chandra & Nachippan, Murugu & Kalam, M.A & Truong, Thanh Hai & Cao, Dao Nam & , 2023. "Strategic combination of waste plastic/tire pyrolysis oil with biodiesel for natural gas-enriched HCCI engine: Experimental analysis and machine learning model," Energy, Elsevier, vol. 280(C).
    14. Kihyun Kim & Ocktaeck Lim, 2020. "Investigation of the Spray Development Process of Gasoline-Biodiesel Blended Fuel Sprays in a Constant Volume Chamber," Energies, MDPI, vol. 13(18), pages 1-22, September.
    15. Vinodkumar, V. & Karthikeyan, A., 2022. "Effect of manifold injection of n-decanol on neem biodiesel fuelled CI engine," Energy, Elsevier, vol. 241(C).
    16. Sujeet Kesharvani & Gaurav Dwivedi & Tikendra Nath Verma & Puneet Verma, 2022. "The Experimental Investigation of a Diesel Engine Using Ternary Blends of Algae Biodiesel, Ethanol and Diesel Fuels," Energies, MDPI, vol. 16(1), pages 1-18, December.
    17. Vladimir Anatolyevich Markov & Bowen Sa & Sergey Nikolaevich Devyanin & Anatoly Anatolyevich Zherdev & Pablo Ramon Vallejo Maldonado & Sergey Anatolyevich Zykov & Aleksandr Dmitrievich Denisov & Hewag, 2021. "Investigation of the Performances of a Diesel Engine Operating on Blended and Emulsified Biofuels from Rapeseed Oil," Energies, MDPI, vol. 14(20), pages 1-28, October.
    18. Vallapudi Dhana Raju & Ibham Veza & Harish Venu & Manzoore Elahi M. Soudagar & M. A. Kalam & Tansir Ahamad & Prabhu Appavu & Jayashri N. Nair & S. M. Ashrafur Rahman, 2023. "Comprehensive Analysis of Compression Ratio, Exhaust Gas Recirculation, and Pilot Fuel Injection in a Diesel Engine Fuelled with Tamarind Biodiesel," Sustainability, MDPI, vol. 15(21), pages 1-21, October.
    19. Hoang, Anh Tuan & Tabatabaei, Meisam & Aghbashlo, Mortaza & Carlucci, Antonio Paolo & Ölçer, Aykut I. & Le, Anh Tuan & Ghassemi, Abbas, 2021. "Rice bran oil-based biodiesel as a promising renewable fuel alternative to petrodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    20. Nguyen Xuan Khoa & Ocktaeck Lim, 2022. "A Review of the External and Internal Residual Exhaust Gas in the Internal Combustion Engine," Energies, MDPI, vol. 15(3), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s036054422303551x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.