IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v154y2018icp561-570.html
   My bibliography  Save this article

A new family of Mn-based perovskite (La1-xYxMnO3) with improved oxygen electrocatalytic activity for metal-air batteries

Author

Listed:
  • Miao, He
  • Wang, Zhouhang
  • Wang, Qin
  • Sun, Shanshan
  • Xue, Yejian
  • Wang, Fu
  • Zhao, Jiapei
  • Liu, Zhaoping
  • Yuan, Jinliang

Abstract

The sluggish reaction kinetics occurring at the cathodes limits the performances of the metal-air batteries. Therefore, developing the oxygen electrocatalysts which can accelerate oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is a critical issue. Mn-based perovskite has drawn extensive interests though their ORR and OER catalytic activity still needs to be improved. In this work, a new family of Mn-based perovskite (La1-xYxMnO3, LYM) is developed which demonstrates an improved ORR and OER catalytic activity compared with the representative strontium-doped Mn-based perovskite (LSM). For La0.9Y0.1MnO3 (LYM-10), the onset potential and half-wave potential during ORR can reach 0.909 V and 0.750 V (vs. RHE), respectively, which are more positive than those of LSM reported in most of the recent reports. Furthermore, LYM-10 also shows a better OER catalytic activity than La0.7Sr0.3MnO3 (LSM-30). In addition to its good bifunctional property, LYM-10 also achieves the superior durability compared with Pt/C during ORR, and the current retention of LYM-10 is as high as 97.3% after 43000 s. Using LYM-10 as the cathode catalyst, the alunimum-air battery can reach the maximum power density of 266 mW/cm2, and zinc-air battery can obtain low charge-discharge overpotential and the good cycling stability.

Suggested Citation

  • Miao, He & Wang, Zhouhang & Wang, Qin & Sun, Shanshan & Xue, Yejian & Wang, Fu & Zhao, Jiapei & Liu, Zhaoping & Yuan, Jinliang, 2018. "A new family of Mn-based perovskite (La1-xYxMnO3) with improved oxygen electrocatalytic activity for metal-air batteries," Energy, Elsevier, vol. 154(C), pages 561-570.
  • Handle: RePEc:eee:energy:v:154:y:2018:i:c:p:561-570
    DOI: 10.1016/j.energy.2018.04.145
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218307606
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.04.145?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chou, Chang-Chen & Liu, Cheng-Hong & Chen, Bing-Hung, 2014. "Effects of reduction temperature and pH value of polyol process on reduced graphene oxide supported Pt electrocatalysts for oxygen reduction reaction," Energy, Elsevier, vol. 70(C), pages 231-238.
    2. Chaisubanan, Napapat & Maniwan, Witchaya & Hunsom, Mali, 2017. "Effect of heat-treatment on the performance of PtM/C (M = Cr, Pd, Co) catalysts towards the oxygen reduction reaction in PEM fuel cell," Energy, Elsevier, vol. 127(C), pages 454-461.
    3. Wang, Wei & Song, Junnan & Kang, Yumao & Chai, Dan & Zhao, Rui & Lei, Ziqiang, 2017. "Sm2O3 embedded in nitrogen doped carbon with mosaic structure: An effective catalyst for oxygen reduction reaction," Energy, Elsevier, vol. 133(C), pages 115-120.
    4. Pei, Pucheng & Wang, Keliang & Ma, Ze, 2014. "Technologies for extending zinc–air battery’s cyclelife: A review," Applied Energy, Elsevier, vol. 128(C), pages 315-324.
    5. Jung, Chi-Young & Kim, Tae-Hyun & Kim, Wha-Jung & Yi, Sung-Chul, 2016. "Computational analysis of the zinc utilization in the primary zinc-air batteries," Energy, Elsevier, vol. 102(C), pages 694-704.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Huiyu & Liu, Pengzhan & Ma, Qiuxia & Tang, Zihao & Wang, Mu & Hu, Junhui, 2023. "Airborne ultrasound catalyzed saltwater Al/Mg-air flow batteries," Energy, Elsevier, vol. 270(C).
    2. Tan, Peng & Chen, Bin & Xu, Haoran & Cai, Weizi & He, Wei & Ni, Meng, 2019. "Porous Co3O4 nanoplates as the active material for rechargeable Zn-air batteries with high energy efficiency and cycling stability," Energy, Elsevier, vol. 166(C), pages 1241-1248.
    3. Liu, Xuan & Xue, Jilai, 2019. "The role of Al2Gd cuboids in the discharge performance and electrochemical behaviors of AZ31-Gd anode for Mg-air batteries," Energy, Elsevier, vol. 189(C).
    4. Liu, Zhenning & Li, Zhiyuan & Ma, Jian & Dong, Xu & Ku, Wen & Wang, Mi & Sun, Hang & Liang, Song & Lu, Guolong, 2018. "Nitrogen and cobalt-doped porous biocarbon materials derived from corn stover as efficient electrocatalysts for aluminum-air batteries," Energy, Elsevier, vol. 162(C), pages 453-459.
    5. Flores-Lasluisa, J.X. & Huerta, F. & Cazorla-Amorós, D. & Morallón, E., 2023. "LaNi1-xCoxO3 perovskites for application in electrochemical reactions involving molecular oxygen," Energy, Elsevier, vol. 273(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Wenjing & Xu, Wanghua & Xie, Anjian & Zhang, Hui & Wang, Cuiping & Shen, Yuhua, 2017. "An effective strategy for the preparation of nitrogen-doped carbon from Imperata cylindrica panicle and its use as a metal-free catalyst for the oxygen reduction reaction," Energy, Elsevier, vol. 141(C), pages 1324-1331.
    2. Rivera-Lugo, Yazmín Y. & Salazar-Gastélum, Moisés I. & López-Rosas, Deisly M. & Reynoso-Soto, Edgar A. & Pérez-Sicairos, Sergio & Velraj, Samgopiraj & Flores-Hernández, José R. & Félix-Navarro, Rosa M, 2018. "Effect of template, reaction time and platinum concentration in the synthesis of PtCu/CNT catalyst for PEMFC applications," Energy, Elsevier, vol. 148(C), pages 561-570.
    3. K. David Huang & Thangavel Sangeetha & Wu-Fu Cheng & Chunyo Lin & Po-Tuan Chen, 2018. "Computational Fluid Dynamics Approach for Performance Prediction in a Zinc–Air Fuel Cell," Energies, MDPI, vol. 11(9), pages 1-13, August.
    4. Yuan, Wenjing & Xie, Anjian & Chen, Ping & Huang, Fangzhi & Li, Shikuo & Shen, Yuhua, 2018. "Combustion reaction-derived nitrogen-doped porous carbon as an effective metal-Free catalyst for the oxygen reduction reaction," Energy, Elsevier, vol. 152(C), pages 333-340.
    5. Pan, Siyu & Cai, Zhuang & Yang, Liu & Tang, Bo & Xu, Xin & Chen, Hun & Ran, Lingling & Jing, Baojian & Zou, Jinlong, 2018. "Exposure of sufficient edge sites on well-crystallized MoSe2 induced by nitrogen doping (Mo−Nx) for Pt: Enhanced co-catalytic activity and methanol tolerance for oxygen reduction," Energy, Elsevier, vol. 159(C), pages 11-20.
    6. Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
    7. Zhou, Xuejun & Tang, Sheng & Yin, Yan & Sun, Shuihui & Qiao, Jinli, 2016. "Hierarchical porous N-doped graphene foams with superior oxygen reduction reactivity for polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 175(C), pages 459-467.
    8. Liu, Xuan & Xue, Jilai, 2019. "The role of Al2Gd cuboids in the discharge performance and electrochemical behaviors of AZ31-Gd anode for Mg-air batteries," Energy, Elsevier, vol. 189(C).
    9. Jung, Chi-Young & Kim, Tae-Hyun & Kim, Wha-Jung & Yi, Sung-Chul, 2016. "Computational analysis of the zinc utilization in the primary zinc-air batteries," Energy, Elsevier, vol. 102(C), pages 694-704.
    10. Mirzaei, Farokh & Parnian, Mohammad Javad & Rowshanzamir, Soosan, 2017. "Durability investigation and performance study of hydrothermal synthesized platinum-multi walled carbon nanotube nanocomposite catalyst for proton exchange membrane fuel cell," Energy, Elsevier, vol. 138(C), pages 696-705.
    11. Abdul Ghani Olabi & Enas Taha Sayed & Tabbi Wilberforce & Aisha Jamal & Abdul Hai Alami & Khaled Elsaid & Shek Mohammod Atiqure Rahman & Sheikh Khaleduzzaman Shah & Mohammad Ali Abdelkareem, 2021. "Metal-Air Batteries—A Review," Energies, MDPI, vol. 14(21), pages 1-46, November.
    12. Wenger, Erez & Epstein, Michael & Kribus, Abraham, 2017. "Thermo-electro-chemical storage (TECS) of solar energy," Applied Energy, Elsevier, vol. 190(C), pages 788-799.
    13. Pei, Pucheng & Huang, Shangwei & Chen, Dongfang & Li, Yuehua & Wu, Ziyao & Ren, Peng & Wang, Keliang & Jia, Xiaoning, 2019. "A high-energy-density and long-stable-performance zinc-air fuel cell system," Applied Energy, Elsevier, vol. 241(C), pages 124-129.
    14. Thangavel Sangeetha & Po-Tuan Chen & Wu-Fu Cheng & Wei-Mon Yan & K. David Huang, 2019. "Optimization of the Electrolyte Parameters and Components in Zinc Particle Fuel Cells," Energies, MDPI, vol. 12(6), pages 1-13, March.
    15. Wang, Yifei & Kwok, Holly Y.H. & Pan, Wending & Zhang, Huimin & Lu, Xu & Leung, Dennis Y.C., 2019. "Parametric study and optimization of a low-cost paper-based Al-air battery with corrosion inhibition ability," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    16. Yang, H.N. & Lee, D.C. & Park, K.W. & Kim, W.J., 2015. "Platinum–boron doped graphene intercalated by carbon black for cathode catalyst in proton exchange membrane fuel cell," Energy, Elsevier, vol. 89(C), pages 500-510.
    17. Yuan, Wenjing & Xie, Anjian & Li, Shikuo & Huang, Fangzhi & Zhang, Peigen & Shen, Yuhua, 2016. "High-activity oxygen reduction catalyst based on low-cost bagasse, nitrogen and large specific surface area," Energy, Elsevier, vol. 115(P1), pages 397-403.
    18. Manzetti, Sergio & Mariasiu, Florin, 2015. "Electric vehicle battery technologies: From present state to future systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1004-1012.
    19. Lee, W.H. & Yang, H.N. & Park, K.W. & Choi, B.S. & Yi, S.C. & Kim, W.J., 2016. "Synergistic effect of boron/nitrogen co-doping into graphene and intercalation of carbon black for Pt-BCN-Gr/CB hybrid catalyst on cell performance of polymer electrolyte membrane fuel cell," Energy, Elsevier, vol. 96(C), pages 314-324.
    20. Chao, Shujun & Zhang, Yatian & Wang, Kui & Bai, Zhengyu & Yang, Lin, 2016. "Flower–like Ni and N codoped hierarchical porous carbon microspheres with enhanced performance for fuel cell storage," Applied Energy, Elsevier, vol. 175(C), pages 421-428.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:154:y:2018:i:c:p:561-570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.