IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v162y2018icp453-459.html
   My bibliography  Save this article

Nitrogen and cobalt-doped porous biocarbon materials derived from corn stover as efficient electrocatalysts for aluminum-air batteries

Author

Listed:
  • Liu, Zhenning
  • Li, Zhiyuan
  • Ma, Jian
  • Dong, Xu
  • Ku, Wen
  • Wang, Mi
  • Sun, Hang
  • Liang, Song
  • Lu, Guolong

Abstract

Development of convenient, economic and large scale catalysts for oxygen reduction reaction (ORR) in alkaline medium is of great significance to practical applications of aluminum-air batteries. Herein, a corn-stover-derived, nitrogen and cobalt co-doped porous biocarbon material has been prepared and utilized as ORR catalysts in aluminum-air batteries. The resultant product (NCAC-Co) exhibits an interconnected hierarchical porous structure with a high specific surface area (1877.3 m2 g−1). The electrocatalytic characterization of NCAC-Co reveals a half-wave potential (0.743 V vs. RHE) only slightly lower than that of commercial Pt/C (0.793 V vs. RHE) in alkaline medium. Moreover, NCAC-Co also demonstrates the mechanism of 4-electron oxygen reduction (n = 3.87) and outstanding durability. The excellent ORR performance of NCAC-Co can be attributed to the presence of pyridinic N, graphitic N and Co nanoparticles as well as the interconnected hierarchical porous structure. More importantly, NCAC-Co also delivers a good behavior when applied in aluminum-air batteries. The work presented herein shows the NCAC-Co derived from corn stover holds good promise to be an alternative of economic and large scale catalysts for metal-air batteries.

Suggested Citation

  • Liu, Zhenning & Li, Zhiyuan & Ma, Jian & Dong, Xu & Ku, Wen & Wang, Mi & Sun, Hang & Liang, Song & Lu, Guolong, 2018. "Nitrogen and cobalt-doped porous biocarbon materials derived from corn stover as efficient electrocatalysts for aluminum-air batteries," Energy, Elsevier, vol. 162(C), pages 453-459.
  • Handle: RePEc:eee:energy:v:162:y:2018:i:c:p:453-459
    DOI: 10.1016/j.energy.2018.07.175
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218314725
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.07.175?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Jie-Cheng & Wu, Xiao-Tong & Chen, Li-Jun & Li, Nan & Liu, Zhao-Qing, 2018. "Bifunctional MOF-derived Co-N-doped carbon electrocatalysts for high-performance zinc-air batteries and MFCs," Energy, Elsevier, vol. 156(C), pages 95-102.
    2. Miao, He & Wang, Zhouhang & Wang, Qin & Sun, Shanshan & Xue, Yejian & Wang, Fu & Zhao, Jiapei & Liu, Zhaoping & Yuan, Jinliang, 2018. "A new family of Mn-based perovskite (La1-xYxMnO3) with improved oxygen electrocatalytic activity for metal-air batteries," Energy, Elsevier, vol. 154(C), pages 561-570.
    3. Stoševski, Ivan & Krstić, Jelena & Milikić, Jadranka & Šljukić, Biljana & Kačarević-Popović, Zorica & Mentus, Slavko & Miljanić, Šćepan, 2016. "Radiolitically synthesized nano Ag/C catalysts for oxygen reduction and borohydride oxidation reactions in alkaline media, for potential applications in fuel cells," Energy, Elsevier, vol. 101(C), pages 79-90.
    4. Yang, H.N. & Lee, D.C. & Park, K.W. & Kim, W.J., 2015. "Platinum–boron doped graphene intercalated by carbon black for cathode catalyst in proton exchange membrane fuel cell," Energy, Elsevier, vol. 89(C), pages 500-510.
    5. Tang, Sheng & Zhou, Xuejun & Xu, Nengneng & Bai, Zhengyu & Qiao, Jinli & Zhang, Jiujun, 2016. "Template-free synthesis of three-dimensional nanoporous N-doped graphene for high performance fuel cell oxygen reduction reaction in alkaline media," Applied Energy, Elsevier, vol. 175(C), pages 405-413.
    6. Wu, Mingjie & Zhang, Enguang & Guo, Qinping & Wang, Yongzhen & Qiao, Jinli & Li, Kaixi & Pei, Pucheng, 2016. "N/S-Me (Fe, Co, Ni) doped hierarchical porous carbons for fuel cell oxygen reduction reaction with high catalytic activity and long-term stability," Applied Energy, Elsevier, vol. 175(C), pages 468-478.
    7. Lo Vecchio, Carmelo & Aricò, Antonino Salvatore & Monforte, Giuseppe & Baglio, Vincenzo, 2018. "EDTA-derived CoNC and FeNC electro-catalysts for the oxygen reduction reaction in acid environment," Renewable Energy, Elsevier, vol. 120(C), pages 342-349.
    8. Yuan, Wenjing & Xie, Anjian & Li, Shikuo & Huang, Fangzhi & Zhang, Peigen & Shen, Yuhua, 2016. "High-activity oxygen reduction catalyst based on low-cost bagasse, nitrogen and large specific surface area," Energy, Elsevier, vol. 115(P1), pages 397-403.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tan, Peng & Chen, Bin & Xu, Haoran & Cai, Weizi & He, Wei & Ni, Meng, 2019. "Porous Co3O4 nanoplates as the active material for rechargeable Zn-air batteries with high energy efficiency and cycling stability," Energy, Elsevier, vol. 166(C), pages 1241-1248.
    2. Ouyang, Tiancheng & Lu, Jie & Zhao, Zhongkai & Chen, Jingxian & Xu, Peihang, 2021. "New insight on the mechanism of vibration effects in vapor-feed microfluidic fuel cell," Energy, Elsevier, vol. 225(C).
    3. Zhong, Kengqiang & Li, Meng & Yang, Yue & Zhang, Hongguo & Zhang, Bopeng & Tang, Jinfeng & Yan, Jia & Su, Minhua & Yang, Zhiquan, 2019. "Nitrogen-doped biochar derived from watermelon rind as oxygen reduction catalyst in air cathode microbial fuel cells," Applied Energy, Elsevier, vol. 242(C), pages 516-525.
    4. Qin, Liyuan & Wu, Yang & Jiang, Enchen, 2022. "In situ template preparation of porous carbon materials that are derived from swine manure and have ordered hierarchical nanopore structures for energy storage," Energy, Elsevier, vol. 242(C).
    5. Lim, B.A. & Lim, S. & Pang, Y.L. & Shuit, S.H. & Kuan, S.H., 2023. "Critical review on the development of biomass waste as precursor for carbon material as electrocatalysts for metal-air batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    6. Wei, Manhui & Wang, Keliang & Zuo, Yayu & Wang, Hengwei & Zhao, Siyuan & Zhang, Pengfei & Zhang, Songmao & Shui, Youfu & Pei, Pucheng & Chen, Junfeng, 2023. "Inner Zn layer and outer glutamic acid film as efficient dual-protective interface of Al anode in Al-air fuel cell," Energy, Elsevier, vol. 267(C).
    7. Liu, Xuan & Xue, Jilai, 2019. "The role of Al2Gd cuboids in the discharge performance and electrochemical behaviors of AZ31-Gd anode for Mg-air batteries," Energy, Elsevier, vol. 189(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xuan & Xue, Jilai, 2019. "The role of Al2Gd cuboids in the discharge performance and electrochemical behaviors of AZ31-Gd anode for Mg-air batteries," Energy, Elsevier, vol. 189(C).
    2. Ghosh, Arpita & Chandran, Priji & Ramaprabhu, S., 2017. "Palladium-nitrogen coordinated cobalt alloy towards hydrogen oxidation and oxygen reduction reactions with high catalytic activity in renewable energy generations of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 208(C), pages 37-48.
    3. Nandan, Ravi & Goswami, Gopal Krishna & Nanda, Karuna Kar, 2017. "Direct synthesis of Pt-free catalyst on gas diffusion layer of fuel cell and usage of high boiling point fuels for efficient utilization of waste heat," Applied Energy, Elsevier, vol. 205(C), pages 1050-1058.
    4. Kiyani, Roya & Rowshanzamir, Soosan & Parnian, Mohammad Javad, 2016. "Nitrogen doped graphene supported palladium-cobalt as a promising catalyst for methanol oxidation reaction: Synthesis, characterization and electrocatalytic performance," Energy, Elsevier, vol. 113(C), pages 1162-1173.
    5. She, Yiyi & Chen, Jinfan & Zhang, Chengxu & Lu, Zhouguang & Ni, Meng & Sit, Patrick H.-L. & Leung, Michael K.H., 2018. "Nitrogen-doped graphene derived from ionic liquid as metal-free catalyst for oxygen reduction reaction and its mechanisms," Applied Energy, Elsevier, vol. 225(C), pages 513-521.
    6. Zhong, Kengqiang & Li, Meng & Yang, Yue & Zhang, Hongguo & Zhang, Bopeng & Tang, Jinfeng & Yan, Jia & Su, Minhua & Yang, Zhiquan, 2019. "Nitrogen-doped biochar derived from watermelon rind as oxygen reduction catalyst in air cathode microbial fuel cells," Applied Energy, Elsevier, vol. 242(C), pages 516-525.
    7. Tan, Peng & Chen, Bin & Xu, Haoran & Cai, Weizi & He, Wei & Ni, Meng, 2019. "Porous Co3O4 nanoplates as the active material for rechargeable Zn-air batteries with high energy efficiency and cycling stability," Energy, Elsevier, vol. 166(C), pages 1241-1248.
    8. Parnian, Mohammad Javad & Rowshanzamir, Soosan & Gashoul, Fatemeh, 2017. "Comprehensive investigation of physicochemical and electrochemical properties of sulfonated poly (ether ether ketone) membranes with different degrees of sulfonation for proton exchange membrane fuel ," Energy, Elsevier, vol. 125(C), pages 614-628.
    9. Ji, Zhaoqi & Perez-Page, Maria & Chen, Jianuo & Rodriguez, Romeo Gonzalez & Cai, Rongsheng & Haigh, Sarah J. & Holmes, Stuart M., 2021. "A structured catalyst support combining electrochemically exfoliated graphene oxide and carbon black for enhanced performance and durability in low-temperature hydrogen fuel cells," Energy, Elsevier, vol. 226(C).
    10. Yazmín Yorely Rivera-Lugo & Kevin Isaac Pérez-Muñoz & Balter Trujillo-Navarrete & Carolina Silva-Carrillo & Edgar Alonso Reynoso-Soto & Julio Cesar Calva Yañez & Shui Wai Lin & José Roberto Flores-Her, 2020. "PtPd Hybrid Composite Catalysts as Cathodes for Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 13(2), pages 1-12, January.
    11. Wei, Manhui & Wang, Keliang & Zuo, Yayu & Wang, Hengwei & Zhao, Siyuan & Zhang, Pengfei & Zhang, Songmao & Shui, Youfu & Pei, Pucheng & Chen, Junfeng, 2023. "Inner Zn layer and outer glutamic acid film as efficient dual-protective interface of Al anode in Al-air fuel cell," Energy, Elsevier, vol. 267(C).
    12. Xu, Fei & Yu, Chen & Qian, Guangfu & Luo, Lin & Hasan, Syed Waqar & Yin, Shibin & Tsiakaras, Panagiotis, 2020. "Electrocatalytic production of hydrogen over highly efficient ultrathin carbon encapsulated S, P co-existence copper nanorods composite," Renewable Energy, Elsevier, vol. 151(C), pages 1278-1285.
    13. Mirzaei, Farokh & Parnian, Mohammad Javad & Rowshanzamir, Soosan, 2017. "Durability investigation and performance study of hydrothermal synthesized platinum-multi walled carbon nanotube nanocomposite catalyst for proton exchange membrane fuel cell," Energy, Elsevier, vol. 138(C), pages 696-705.
    14. Dasari, Bhagya Lakshmi & Nouri, Jamshid M. & Brabazon, Dermot & Naher, Sumsun, 2017. "Graphene and derivatives – Synthesis techniques, properties and their energy applications," Energy, Elsevier, vol. 140(P1), pages 766-778.
    15. Hu, Zunyan & Xu, Liangfei & Huang, Yiyuan & Li, Jianqiu & Ouyang, Minggao & Du, Xiaoli & Jiang, Hongliang, 2018. "Comprehensive analysis of galvanostatic charge method for fuel cell degradation diagnosis," Applied Energy, Elsevier, vol. 212(C), pages 1321-1332.
    16. Pashchenko, Dmitry, 2018. "First law energy analysis of thermochemical waste-heat recuperation by steam methane reforming," Energy, Elsevier, vol. 143(C), pages 478-487.
    17. Pei, Pucheng & Huang, Shangwei & Chen, Dongfang & Li, Yuehua & Wu, Ziyao & Ren, Peng & Wang, Keliang & Jia, Xiaoning, 2019. "A high-energy-density and long-stable-performance zinc-air fuel cell system," Applied Energy, Elsevier, vol. 241(C), pages 124-129.
    18. David Sebastián & María Jesús Nieto-Monge & Sara Pérez-Rodríguez & Elena Pastor & María Jesús Lázaro, 2018. "Nitrogen Doped Ordered Mesoporous Carbon as Support of PtRu Nanoparticles for Methanol Electro-Oxidation," Energies, MDPI, vol. 11(4), pages 1-16, April.
    19. Han, Chaoling & Chen, Zhenqian, 2021. "Study on the synergism of thermal transport and electrochemical of PEMFC based on N, P co-doped graphene substrate electrode," Energy, Elsevier, vol. 214(C).
    20. Beltrán-Gastélum, M. & Salazar-Gastélum, M.I. & Flores-Hernández, J.R. & Botte, G.G. & Pérez-Sicairos, S. & Romero-Castañon, T. & Reynoso-Soto, E. & Félix-Navarro, R.M., 2019. "Pt-Au nanoparticles on graphene for oxygen reduction reaction: Stability and performance on proton exchange membrane fuel cell," Energy, Elsevier, vol. 181(C), pages 1225-1234.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:162:y:2018:i:c:p:453-459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.