Flower–like Ni and N codoped hierarchical porous carbon microspheres with enhanced performance for fuel cell storage
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2016.04.043
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Domen, Kazunari & Ikeda, Shigeru & Takata, Tsuyoshi & Tanaka, Akira & Hara, Michikazu & Kondo, Junko N., 2000. "Mechano-catalytic overall water-splitting into hydrogen and oxygen on some metal oxides," Applied Energy, Elsevier, vol. 67(1-2), pages 159-179, September.
- Pei, Pucheng & Wang, Keliang & Ma, Ze, 2014. "Technologies for extending zinc–air battery’s cyclelife: A review," Applied Energy, Elsevier, vol. 128(C), pages 315-324.
- Mark K. Debe, 2012. "Electrocatalyst approaches and challenges for automotive fuel cells," Nature, Nature, vol. 486(7401), pages 43-51, June.
- Trongchuankij, Wiruyn & Pruksathorn, Kejvalee & Hunsom, Mali, 2011. "Preparation of a high performance Pt-Co/C electrocatalyst for oxygen reduction in PEM fuel cell via a combined process of impregnation and seeding," Applied Energy, Elsevier, vol. 88(3), pages 974-980, March.
- Zeng, L. & Tang, Z.K. & Zhao, T.S., 2014. "A high-performance alkaline exchange membrane direct formate fuel cell," Applied Energy, Elsevier, vol. 115(C), pages 405-410.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yuan, Rong-hua & He, Yun & He, Wei & Ni, Meng & Leung, Michael K.H., 2019. "Bifunctional electrocatalytic activity of La0.8Sr0.2MnO3-based perovskite with the A-site deficiency for oxygen reduction and evolution reactions in alkaline media," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Ghosh, Arpita & Chandran, Priji & Ramaprabhu, S., 2017. "Palladium-nitrogen coordinated cobalt alloy towards hydrogen oxidation and oxygen reduction reactions with high catalytic activity in renewable energy generations of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 208(C), pages 37-48.
- Zhong, Kengqiang & Li, Meng & Yang, Yue & Zhang, Hongguo & Zhang, Bopeng & Tang, Jinfeng & Yan, Jia & Su, Minhua & Yang, Zhiquan, 2019. "Nitrogen-doped biochar derived from watermelon rind as oxygen reduction catalyst in air cathode microbial fuel cells," Applied Energy, Elsevier, vol. 242(C), pages 516-525.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
- Wang, Yang & Luo, Hui & Li, Guang & Jiang, Jianming, 2016. "Highly active platinum electrocatalyst towards oxygen reduction reaction in renewable energy generations of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 173(C), pages 59-66.
- Zhong, Kengqiang & Li, Meng & Yang, Yue & Zhang, Hongguo & Zhang, Bopeng & Tang, Jinfeng & Yan, Jia & Su, Minhua & Yang, Zhiquan, 2019. "Nitrogen-doped biochar derived from watermelon rind as oxygen reduction catalyst in air cathode microbial fuel cells," Applied Energy, Elsevier, vol. 242(C), pages 516-525.
- Wu, Mingjie & Zhang, Enguang & Guo, Qinping & Wang, Yongzhen & Qiao, Jinli & Li, Kaixi & Pei, Pucheng, 2016. "N/S-Me (Fe, Co, Ni) doped hierarchical porous carbons for fuel cell oxygen reduction reaction with high catalytic activity and long-term stability," Applied Energy, Elsevier, vol. 175(C), pages 468-478.
- Lin, Rui & Zhong, Di & Lan, Shunbo & Guo, Rong & Ma, Yunyang & Cai, Xin, 2021. "Experimental validation for enhancement of PEMFC cold start performance: Based on the optimization of micro porous layer," Applied Energy, Elsevier, vol. 300(C).
- Zhou, Xuejun & Tang, Sheng & Yin, Yan & Sun, Shuihui & Qiao, Jinli, 2016. "Hierarchical porous N-doped graphene foams with superior oxygen reduction reactivity for polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 175(C), pages 459-467.
- Jung, Chi-Young & Yi, Jae-You & Yi, Sung-Chul, 2014. "On the role of the silica-containing catalyst layer for proton exchange membrane fuel cells," Energy, Elsevier, vol. 68(C), pages 794-800.
- Huang, Chung-Neng & Chen, Yui-Sung, 2017. "Design of magnetic flywheel control for performance improvement of fuel cells used in vehicles," Energy, Elsevier, vol. 118(C), pages 840-852.
- Wang, Qing & Han, Ning & Bokhari, Awais & Li, Xue & Cao, Yue & Asif, Saira & Shen, Zhengfeng & Si, Weimeng & Wang, Fagang & Klemeš, Jiří Jaromír & Zhao, Xiaolin, 2022. "Insights into MXenes-based electrocatalysts for oxygen reduction," Energy, Elsevier, vol. 255(C).
- Pei, Pucheng & Wu, Ziyao & Li, Yuehua & Jia, Xiaoning & Chen, Dongfang & Huang, Shangwei, 2018. "Improved methods to measure hydrogen crossover current in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 215(C), pages 338-347.
- Faria, Lourenço Galvão Diniz & Andersen, Maj Munch, 2017. "Sectoral patterns versus firm-level heterogeneity - The dynamics of eco-innovation strategies in the automotive sector," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 266-281.
- Liu, Jing & Mi, Liwei & Xing, Yanan & Wang, Tianfu & Wang, Fu, 2020. "Construction of Ti3C2 supported hybrid Co3O4/NCNTs composite as an efficient oxygen reduction electrocatalyst," Renewable Energy, Elsevier, vol. 160(C), pages 1168-1173.
- Hamish Andrew Miller & Jacopo Ruggeri & Andrea Marchionni & Marco Bellini & Maria Vincenza Pagliaro & Carlo Bartoli & Andrea Pucci & Elisa Passaglia & Francesco Vizza, 2018. "Improving the Energy Efficiency of Direct Formate Fuel Cells with a Pd/C-CeO 2 Anode Catalyst and Anion Exchange Ionomer in the Catalyst Layer," Energies, MDPI, vol. 11(2), pages 1-12, February.
- Xia, Zhangxun & Sun, Ruili & Jing, Fenning & Wang, Suli & Sun, Hai & Sun, Gongquan, 2018. "Modeling and optimization of Scaffold-like macroporous electrodes for highly efficient direct methanol fuel cells," Applied Energy, Elsevier, vol. 221(C), pages 239-248.
- Yuan, Rong-hua & He, Yun & He, Wei & Ni, Meng & Leung, Michael K.H., 2019. "Bifunctional electrocatalytic activity of La0.8Sr0.2MnO3-based perovskite with the A-site deficiency for oxygen reduction and evolution reactions in alkaline media," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Li, Yanju & Li, Dongxu & Ma, Zheshu & Zheng, Meng & Lu, Zhanghao & Song, Hanlin & Guo, Xinjia & Shao, Wei, 2022. "Performance analysis and optimization of a novel vehicular power system based on HT-PEMFC integrated methanol steam reforming and ORC," Energy, Elsevier, vol. 257(C).
- Jung, Chi-Young & Kim, Tae-Hyun & Kim, Wha-Jung & Yi, Sung-Chul, 2016. "Computational analysis of the zinc utilization in the primary zinc-air batteries," Energy, Elsevier, vol. 102(C), pages 694-704.
- Li, Yong & Song, Jian & Yang, Jie, 2015. "Graphene models and nano-scale characterization technologies for fuel cell vehicle electrodes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 66-77.
- Li, Xiang & Tang, Fumin & Wang, Qianqian & Li, Bing & Dai, Haifeng & Chang, Guofeng & Zhang, Cunman & Ming, Pingwen, 2023. "Effect of cathode catalyst layer on proton exchange membrane fuel cell performance: Considering the spatially variable distribution," Renewable Energy, Elsevier, vol. 212(C), pages 644-654.
- Zhang, Ruiyuan & Min, Ting & Chen, Li & Li, Hailong & Yan, Jinyue & Tao, Wen-Quan, 2022. "Pore-scale study of effects of relative humidity on reactive transport processes in catalyst layers in PEMFC," Applied Energy, Elsevier, vol. 323(C).
More about this item
Keywords
Flower–like hierarchical porous structure; Fuel cell storage; Oxygen reduction reaction; Oxygen evolution reaction; Alkaline polymer electrolyte fuel cells; Cell performance;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:175:y:2016:i:c:p:421-428. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.