Computational Fluid Dynamics Approach for Performance Prediction in a Zinc–Air Fuel Cell
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Pei, Pucheng & Wang, Keliang & Ma, Ze, 2014. "Technologies for extending zinc–air battery’s cyclelife: A review," Applied Energy, Elsevier, vol. 128(C), pages 315-324.
- Jung, Chi-Young & Kim, Tae-Hyun & Kim, Wha-Jung & Yi, Sung-Chul, 2016. "Computational analysis of the zinc utilization in the primary zinc-air batteries," Energy, Elsevier, vol. 102(C), pages 694-704.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Thangavel Sangeetha & Po-Tuan Chen & Wu-Fu Cheng & Wei-Mon Yan & K. David Huang, 2019. "Optimization of the Electrolyte Parameters and Components in Zinc Particle Fuel Cells," Energies, MDPI, vol. 12(6), pages 1-13, March.
- Sangeetha, Thangavel & Chen, Po-Tuan & Yan, Wei-Mon & Huang, K. David, 2020. "Enhancement of air-flow management in Zn-air fuel cells by the optimization of air-flow parameters," Energy, Elsevier, vol. 197(C).
- Ramin Khezri & Kridsada Jirasattayaporn & Ali Abbasi & Thandavarayan Maiyalagan & Ahmad Azmin Mohamad & Soorathep Kheawhom, 2020. "Three-Dimensional Fibrous Iron as Anode Current Collector for Rechargeable Zinc–Air Batteries," Energies, MDPI, vol. 13(6), pages 1-18, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Miao, He & Wang, Zhouhang & Wang, Qin & Sun, Shanshan & Xue, Yejian & Wang, Fu & Zhao, Jiapei & Liu, Zhaoping & Yuan, Jinliang, 2018. "A new family of Mn-based perovskite (La1-xYxMnO3) with improved oxygen electrocatalytic activity for metal-air batteries," Energy, Elsevier, vol. 154(C), pages 561-570.
- Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
- Zhou, Xuejun & Tang, Sheng & Yin, Yan & Sun, Shuihui & Qiao, Jinli, 2016. "Hierarchical porous N-doped graphene foams with superior oxygen reduction reactivity for polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 175(C), pages 459-467.
- Liu, Xuan & Xue, Jilai, 2019. "The role of Al2Gd cuboids in the discharge performance and electrochemical behaviors of AZ31-Gd anode for Mg-air batteries," Energy, Elsevier, vol. 189(C).
- Yuan, Rong-hua & He, Yun & He, Wei & Ni, Meng & Leung, Michael K.H., 2019. "Bifunctional electrocatalytic activity of La0.8Sr0.2MnO3-based perovskite with the A-site deficiency for oxygen reduction and evolution reactions in alkaline media," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Jung, Chi-Young & Kim, Tae-Hyun & Kim, Wha-Jung & Yi, Sung-Chul, 2016. "Computational analysis of the zinc utilization in the primary zinc-air batteries," Energy, Elsevier, vol. 102(C), pages 694-704.
- Abdul Ghani Olabi & Enas Taha Sayed & Tabbi Wilberforce & Aisha Jamal & Abdul Hai Alami & Khaled Elsaid & Shek Mohammod Atiqure Rahman & Sheikh Khaleduzzaman Shah & Mohammad Ali Abdelkareem, 2021. "Metal-Air Batteries—A Review," Energies, MDPI, vol. 14(21), pages 1-46, November.
- Trocino, Stefano & Lo Faro, Massimiliano & Zignani, Sabrina Campagna & Antonucci, Vincenzo & Aricò, Antonino Salvatore, 2019. "High performance solid-state iron-air rechargeable ceramic battery operating at intermediate temperatures (500–650 °C)," Applied Energy, Elsevier, vol. 233, pages 386-394.
- Wenger, Erez & Epstein, Michael & Kribus, Abraham, 2017. "Thermo-electro-chemical storage (TECS) of solar energy," Applied Energy, Elsevier, vol. 190(C), pages 788-799.
- Pei, Pucheng & Huang, Shangwei & Chen, Dongfang & Li, Yuehua & Wu, Ziyao & Ren, Peng & Wang, Keliang & Jia, Xiaoning, 2019. "A high-energy-density and long-stable-performance zinc-air fuel cell system," Applied Energy, Elsevier, vol. 241(C), pages 124-129.
- Thangavel Sangeetha & Po-Tuan Chen & Wu-Fu Cheng & Wei-Mon Yan & K. David Huang, 2019. "Optimization of the Electrolyte Parameters and Components in Zinc Particle Fuel Cells," Energies, MDPI, vol. 12(6), pages 1-13, March.
- Arenas, Luis F. & Loh, Adeline & Trudgeon, David P. & Li, Xiaohong & Ponce de León, Carlos & Walsh, Frank C., 2018. "The characteristics and performance of hybrid redox flow batteries with zinc negative electrodes for energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 992-1016.
- Wang, Yifei & Kwok, Holly Y.H. & Pan, Wending & Zhang, Huimin & Lu, Xu & Leung, Dennis Y.C., 2019. "Parametric study and optimization of a low-cost paper-based Al-air battery with corrosion inhibition ability," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Qahtan, Talal F. & Alade, Ibrahim O. & Rahaman, Md Safiqur & Saleh, Tawfik A., 2024. "Insights into zinc-air battery technological advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
- She, Yiyi & Chen, Jinfan & Zhang, Chengxu & Lu, Zhouguang & Ni, Meng & Sit, Patrick H.-L. & Leung, Michael K.H., 2018. "Nitrogen-doped graphene derived from ionic liquid as metal-free catalyst for oxygen reduction reaction and its mechanisms," Applied Energy, Elsevier, vol. 225(C), pages 513-521.
- Zhong, Kengqiang & Li, Meng & Yang, Yue & Zhang, Hongguo & Zhang, Bopeng & Tang, Jinfeng & Yan, Jia & Su, Minhua & Yang, Zhiquan, 2019. "Nitrogen-doped biochar derived from watermelon rind as oxygen reduction catalyst in air cathode microbial fuel cells," Applied Energy, Elsevier, vol. 242(C), pages 516-525.
- Xu, Nengneng & Qiao, Jinli & Zhang, Xia & Ma, Chengyu & Jian, Saiai & Liu, Yuyu & Pei, Pucheng, 2016. "Morphology controlled La2O3/Co3O4/MnO2–CNTs hybrid nanocomposites with durable bi-functional air electrode in high-performance zinc–air energy storage," Applied Energy, Elsevier, vol. 175(C), pages 495-504.
- Manzetti, Sergio & Mariasiu, Florin, 2015. "Electric vehicle battery technologies: From present state to future systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1004-1012.
- Wang, Keliang & Pei, Pucheng & Wang, Yichun & Liao, Cheng & Wang, Wei & Huang, Shangwei, 2018. "Advanced rechargeable zinc-air battery with parameter optimization," Applied Energy, Elsevier, vol. 225(C), pages 848-856.
- Chao, Shujun & Zhang, Yatian & Wang, Kui & Bai, Zhengyu & Yang, Lin, 2016. "Flower–like Ni and N codoped hierarchical porous carbon microspheres with enhanced performance for fuel cell storage," Applied Energy, Elsevier, vol. 175(C), pages 421-428.
More about this item
Keywords
Zn–air fuel cell; electrochemistry; computational fluid dynamics; Butler–Volmer equation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2185-:d:164982. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.