IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v268y2023ics036054422300052x.html
   My bibliography  Save this article

Stable feedback linearization-based economic MPC scheme for thermal power plant

Author

Listed:
  • Kong, Xiaobing
  • Abdelbaky, Mohamed Abdelkarim
  • Liu, Xiangjie
  • Lee, Kwang Y.

Abstract

The major concern of modern power plants is changing from tracking control to environmental and economic issues. The economic model predictive control (EMPC) scheme, which incorporates the boiler-turbine unit's dynamic tracking and economic optimization into one online framework, can well enhance the dynamic economic performance. Considering the strong nonlinearity that existed in the boiler-turbine system, this paper presents an advanced EMPC scheme based on the input/output feedback linearization (IOFL) approach. The boiler-turbine dynamics are converted via the IOFL method to a linear form, which can be readily used to constitute the standard EMPC scheme. A dual-mode method is adopted in this paper to guarantee the stability of the IOFL EMPC strategy for the boiler-turbine system, in which the first-mode optimizes the economic objective function while preserving the states of the system within a feasible region, and the second-mode moves the system state to the optimum operating point using an auxiliary controller. The simulations under the MATLAB environment demonstrate that the application of the IOFL-based EMPC scheme enhances the economic and dynamic output performance under load demand changes in comparison with fuzzy hierarchical MPC and fuzzy economic MPC schemes.

Suggested Citation

  • Kong, Xiaobing & Abdelbaky, Mohamed Abdelkarim & Liu, Xiangjie & Lee, Kwang Y., 2023. "Stable feedback linearization-based economic MPC scheme for thermal power plant," Energy, Elsevier, vol. 268(C).
  • Handle: RePEc:eee:energy:v:268:y:2023:i:c:s036054422300052x
    DOI: 10.1016/j.energy.2023.126658
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422300052X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.126658?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Su Liu & Jinfeng Liu, 2018. "Economic Model Predictive Control with Zone Tracking," Mathematics, MDPI, vol. 6(5), pages 1-19, April.
    2. Zhang, Hongfu & Gao, Mingming & Fan, Haohao & Zhang, Kaiping & Zhang, Jiahui, 2022. "A dynamic model for supercritical once-through circulating fluidized bed boiler-turbine units," Energy, Elsevier, vol. 241(C).
    3. Haji Haji, Vahab & Fekih, Afef & Monje, Concepción Alicia & Fakhri Asfestani, Ramin, 2020. "Adaptive model predictive control design for the speed and temperature control of a V94.2 gas turbine unit in a combined cycle power plant," Energy, Elsevier, vol. 207(C).
    4. Pires, Thiago S. & Cruz, Manuel E. & Colaço, Marcelo J. & Alves, Marco A.C., 2018. "Application of nonlinear multivariable model predictive control to transient operation of a gas turbine and NOX emissions reduction," Energy, Elsevier, vol. 149(C), pages 341-353.
    5. Kong, Xiaobing & Ma, Lele & Wang, Ce & Guo, Shifan & Abdelbaky, Mohamed Abdelkarim & Liu, Xiangjie & Lee, Kwang Y., 2022. "Large-scale wind farm control using distributed economic model predictive scheme," Renewable Energy, Elsevier, vol. 181(C), pages 581-591.
    6. Wu, Xiao & Wang, Meihong & Lee, Kwang Y., 2020. "Flexible operation of supercritical coal-fired power plant integrated with solvent-based CO2 capture through collaborative predictive control," Energy, Elsevier, vol. 206(C).
    7. Ghabraei, Soheil & Moradi, Hamed & Vossoughi, Gholamreza, 2018. "Design & application of adaptive variable structure &H∞ robust optimal schemes in nonlinear control of boiler-turbine unit in the presence of various uncertainties," Energy, Elsevier, vol. 142(C), pages 1040-1056.
    8. Jiao, Feixiang & Zou, Yuan & Zhang, Xudong & Zhang, Bin, 2022. "Online optimal dispatch based on combined robust and stochastic model predictive control for a microgrid including EV charging station," Energy, Elsevier, vol. 247(C).
    9. Kong, Xiaobing & Liu, Xiangjie & Lee, Kwang Y., 2015. "Nonlinear multivariable hierarchical model predictive control for boiler-turbine system," Energy, Elsevier, vol. 93(P1), pages 309-322.
    10. Wu, Xiao & Xi, Han & Ren, Yuning & Lee, Kwang Y., 2021. "Power-carbon coordinated control of BFG-fired CCGT power plant integrated with solvent-based post-combustion CO2 capture," Energy, Elsevier, vol. 226(C).
    11. Hou, Guolian & Gong, Linjuan & Huang, Congzhi & Zhang, Jianhua, 2020. "Fuzzy modeling and fast model predictive control of gas turbine system," Energy, Elsevier, vol. 200(C).
    12. Liu, Jizhen & Yao, Qi & Hu, Yang, 2019. "Model predictive control for load frequency of hybrid power system with wind power and thermal power," Energy, Elsevier, vol. 172(C), pages 555-565.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mazare, Mahmood & Ramezani, Hossein, 2024. "Enhancing cybersecurity in wind turbines: A resilient reinforcement learning-based optimal control for mitigating FDI attacks," Applied Energy, Elsevier, vol. 373(C).
    2. Hou, Guolian & Huang, Ting & Zheng, Fumeng & Huang, Congzhi, 2024. "A hierarchical reinforcement learning GPC for flexible operation of ultra-supercritical unit considering economy," Energy, Elsevier, vol. 289(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Nianci & Pan, Lei & Pedersen, Simon & Arabkoohsar, Ahmad, 2023. "A two-dimensional design and synthesis method for coordinated control of flexible-operational combined cycle of gas turbine," Energy, Elsevier, vol. 284(C).
    2. Hou, Guolian & Gong, Linjuan & Hu, Bo & Su, Huilin & Huang, Ting & Huang, Congzhi & Fan, Wei & Zhao, Yuanzhu, 2022. "Application of fast adaptive moth-flame optimization in flexible operation modeling for supercritical unit," Energy, Elsevier, vol. 239(PA).
    3. Fu, Yue & Wang, Liyuan & Liu, Ming & Wang, Jinshi & Yan, Junjie, 2023. "Performance analysis of coal-fired power plants integrated with carbon capture system under load-cycling operation conditions," Energy, Elsevier, vol. 276(C).
    4. Lu, Nianci & Pan, Lei & Liu, Zhenxiang & Song, Yajun & Si, Paiyou, 2021. "Flexible operation control strategy for thermos-exchanger water level of two-by-one combined cycle gas turbine based on heat network storage utilization," Energy, Elsevier, vol. 232(C).
    5. Wu, Xiao & Xi, Han & Qiu, Ruohan & Lee, Kwang Y., 2023. "Low carbon optimal planning of the steel mill gas utilization system," Applied Energy, Elsevier, vol. 343(C).
    6. Zhang, Yi & Liu, Jinfeng & Yang, Tingting & Liu, Jianbang & Shen, Jiong & Fang, Fang, 2021. "Dynamic modeling and control of direct air-cooling condenser pressure considering couplings with adjacent systems," Energy, Elsevier, vol. 236(C).
    7. Hou, Guolian & Gong, Linjuan & Huang, Congzhi & Zhang, Jianhua, 2020. "Fuzzy modeling and fast model predictive control of gas turbine system," Energy, Elsevier, vol. 200(C).
    8. Youssef Ait Ali & Mohammed Ouassaid & Zineb Cabrane & Soo-Hyoung Lee, 2023. "Enhanced Primary Frequency Control Using Model Predictive Control in Large-Islanded Power Grids with High Penetration of DFIG-Based Wind Farm," Energies, MDPI, vol. 16(11), pages 1-24, May.
    9. Elkadeem, Mohamed R. & Kotb, Kotb M. & Abido, Mohamed A. & Hasanien, Hany M. & Atiya, Eman G. & Almakhles, Dhafer & Elmorshedy, Mahmoud F., 2024. "Techno-enviro-socio-economic design and finite set model predictive current control of a grid-connected large-scale hybrid solar/wind energy system: A case study of Sokhna Industrial Zone, Egypt," Energy, Elsevier, vol. 289(C).
    10. Song, Yuguang & Xia, Mingchao & Yang, Liu & Chen, Qifang & Su, Su, 2023. "Multi-granularity source-load-storage cooperative dispatch based on combined robust optimization and stochastic optimization for a highway service area micro-energy grid," Renewable Energy, Elsevier, vol. 205(C), pages 747-762.
    11. Wang, Hao & Wang, Tongguang & Ke, Shitang & Hu, Liang & Xie, Jiaojie & Cai, Xin & Cao, Jiufa & Ren, Yuxin, 2023. "Assessing code-based design wind loads for offshore wind turbines in China against typhoons," Renewable Energy, Elsevier, vol. 212(C), pages 669-682.
    12. Wei Wang & Yang Sun & Sitong Jing & Wenguang Zhang & Can Cui, 2018. "Improved Boiler-Turbine Coordinated Control of CHP Units with Heat Accumulators by Introducing Heat Source Regulation," Energies, MDPI, vol. 11(10), pages 1-15, October.
    13. Meng, Qingwei & Sun, Hao & Fang, Fang, 2023. "Stochastic performance evaluation method of wind power DC bus voltage control system," Renewable Energy, Elsevier, vol. 219(P1).
    14. Saletti, Costanza & Morini, Mirko & Gambarotta, Agostino, 2022. "Smart management of integrated energy systems through co-optimization with long and short horizons," Energy, Elsevier, vol. 250(C).
    15. Arabgolarcheh, Alireza & Rouhollahi, Amirhossein & Benini, Ernesto, 2023. "Analysis of middle-to-far wake behind floating offshore wind turbines in the presence of multiple platform motions," Renewable Energy, Elsevier, vol. 208(C), pages 546-560.
    16. Esmaeili, Mohammad & Moradi, Hamed, 2023. "Robust & nonlinear control of an ultra-supercritical coal fired once-through boiler-turbine unit in order to optimize the uncertain problem," Energy, Elsevier, vol. 282(C).
    17. Md. Shafiul Alam & Tanzi Ahmed Chowdhury & Abhishak Dhar & Fahad Saleh Al-Ismail & M. S. H. Choudhury & Md Shafiullah & Md. Ismail Hossain & Md. Alamgir Hossain & Aasim Ullah & Syed Masiur Rahman, 2023. "Solar and Wind Energy Integrated System Frequency Control: A Critical Review on Recent Developments," Energies, MDPI, vol. 16(2), pages 1-31, January.
    18. Yang, Yang & Fu, Jianbin & Shi, Zhaobin & Ma, Lu & Yu, Jie & Fang, Fang & Chen, Shunhua & Lin, Zaibin & Li, Chun, 2023. "Performance and fatigue analysis of an integrated floating wind-current energy system considering the aero-hydro-servo-elastic coupling effects," Renewable Energy, Elsevier, vol. 216(C).
    19. Hongling Zhou & Baohong Li & Qin Jiang & Tianqi Liu & Yingmin Zhang & Yue Yin, 2024. "The Extreme Temperature Weather Impact Mechanism Analysis of MMC-HVDC’s Harmonic Impedance and Its Dynamic Stability," Energies, MDPI, vol. 17(23), pages 1-22, December.
    20. Qin, Yuxiao & Liu, Pei & Li, Zheng, 2022. "Multi-timescale hierarchical scheduling of an integrated energy system considering system inertia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:268:y:2023:i:c:s036054422300052x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.