Closed-Loop Combustion Optimization Based on Dynamic and Adaptive Models with Application to a Coal-Fired Boiler
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Wang, Chunlin & Liu, Yang & Zheng, Song & Jiang, Aipeng, 2018. "Optimizing combustion of coal fired boilers for reducing NOx emission using Gaussian Process," Energy, Elsevier, vol. 153(C), pages 149-158.
- Zheng, Wei & Wang, Chao & Yang, Yajun & Zhang, Yongfei, 2020. "Multi-objective combustion optimization based on data-driven hybrid strategy," Energy, Elsevier, vol. 191(C).
- Smrekar, J. & Potočnik, P. & Senegačnik, A., 2013. "Multi-step-ahead prediction of NOx emissions for a coal-based boiler," Applied Energy, Elsevier, vol. 106(C), pages 89-99.
- Pires, Thiago S. & Cruz, Manuel E. & Colaço, Marcelo J. & Alves, Marco A.C., 2018. "Application of nonlinear multivariable model predictive control to transient operation of a gas turbine and NOX emissions reduction," Energy, Elsevier, vol. 149(C), pages 341-353.
- Li, Qingwei & Yao, Guihuan, 2017. "Improved coal combustion optimization model based on load balance and coal qualities," Energy, Elsevier, vol. 132(C), pages 204-212.
- Tan, Peng & Xia, Ji & Zhang, Cheng & Fang, Qingyan & Chen, Gang, 2016. "Modeling and reduction of NOX emissions for a 700 MW coal-fired boiler with the advanced machine learning method," Energy, Elsevier, vol. 94(C), pages 672-679.
- Shi, Yan & Zhong, Wenqi & Chen, Xi & Yu, A.B. & Li, Jie, 2019. "Combustion optimization of ultra supercritical boiler based on artificial intelligence," Energy, Elsevier, vol. 170(C), pages 804-817.
- Lv, You & Hong, Feng & Yang, Tingting & Fang, Fang & Liu, Jizhen, 2017. "A dynamic model for the bed temperature prediction of circulating fluidized bed boilers based on least squares support vector machine with real operational data," Energy, Elsevier, vol. 124(C), pages 284-294.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lv, You & Lv, Xuguang & Fang, Fang & Yang, Tingting & Romero, Carlos E., 2020. "Adaptive selective catalytic reduction model development using typical operating data in coal-fired power plants," Energy, Elsevier, vol. 192(C).
- Wang, Zhi & Peng, Xianyong & Zhou, Huaichun & Cao, Shengxian & Huang, Wenbo & Yan, Weijie & Li, Kuangyu & Fan, Siyuan, 2024. "A dynamic modeling method using channel-selection convolutional neural network: A case study of NOx emission," Energy, Elsevier, vol. 290(C).
- Tan, Peng & He, Biao & Zhang, Cheng & Rao, Debei & Li, Shengnan & Fang, Qingyan & Chen, Gang, 2019. "Dynamic modeling of NOX emission in a 660 MW coal-fired boiler with long short-term memory," Energy, Elsevier, vol. 176(C), pages 429-436.
- Yang, Guotian & Wang, Yingnan & Li, Xinli, 2020. "Prediction of the NOx emissions from thermal power plant using long-short term memory neural network," Energy, Elsevier, vol. 192(C).
- Tuttle, Jacob F. & Blackburn, Landen D. & Andersson, Klas & Powell, Kody M., 2021. "A systematic comparison of machine learning methods for modeling of dynamic processes applied to combustion emission rate modeling," Applied Energy, Elsevier, vol. 292(C).
- Tang, Zhenhao & Wang, Shikui & Chai, Xiangying & Cao, Shengxian & Ouyang, Tinghui & Li, Yang, 2022. "Auto-encoder-extreme learning machine model for boiler NOx emission concentration prediction," Energy, Elsevier, vol. 256(C).
- Laubscher, Ryno, 2019. "Time-series forecasting of coal-fired power plant reheater metal temperatures using encoder-decoder recurrent neural networks," Energy, Elsevier, vol. 189(C).
- Wu, Yixi & Wang, Ziqi & Shi, Chenli & Jin, Xiaohang & Xu, Zhengguo, 2024. "A novel data-driven approach for coal-fired boiler under deep peak shaving to predict and optimize NOx emission and heat exchange performance," Energy, Elsevier, vol. 304(C).
- Wen, Xiaoqiang & Li, Kaichuang & Wang, Jianguo, 2023. "NOx emission predicting for coal-fired boilers based on ensemble learning methods and optimized base learners," Energy, Elsevier, vol. 264(C).
- Tang, Zhenhao & Wang, Shikui & Li, Yue, 2024. "Dynamic NOX emission concentration prediction based on the combined feature selection algorithm and deep neural network," Energy, Elsevier, vol. 292(C).
- Li, Shicheng & Ma, Suxia & Wang, Fang, 2023. "A combined NOx emission prediction model based on semi-empirical model and black box models," Energy, Elsevier, vol. 264(C).
- Halil Akbaş & Gültekin Özdemir, 2020. "An Integrated Prediction and Optimization Model of a Thermal Energy Production System in a Factory Producing Furniture Components," Energies, MDPI, vol. 13(22), pages 1-29, November.
- Fan, Yuchen & Liu, Xin & Zhang, Chaoqun & Li, Chi & Li, Xinying & Wang, Heyang, 2024. "Dynamic prediction of boiler NOx emission with graph convolutional gated recurrent unit model optimized by genetic algorithm," Energy, Elsevier, vol. 294(C).
- Xie, Peiran & Gao, Mingming & Zhang, Hongfu & Niu, Yuguang & Wang, Xiaowen, 2020. "Dynamic modeling for NOx emission sequence prediction of SCR system outlet based on sequence to sequence long short-term memory network," Energy, Elsevier, vol. 190(C).
- Li, Qingwei & Wu, Jiang & Wei, Hongqi, 2018. "Reduction of elemental mercury in coal-fired boiler flue gas with computational intelligence approach," Energy, Elsevier, vol. 160(C), pages 753-762.
- Yu, Haoyang & Gao, Mingming & Zhang, Hongfu & Yue, Guangxi & Zhang, Zhen, 2023. "Data-driven optimization of pollutant emission and operational efficiency for circulating fluidized bed unit," Energy, Elsevier, vol. 281(C).
- Aminmahalati, Alireza & Fazlali, Alireza & Safikhani, Hamed, 2021. "Multi-objective optimization of CO boiler combustion chamber in the RFCC unit using NSGA II algorithm," Energy, Elsevier, vol. 221(C).
- Zhu, Yukun & Yu, Cong & Fan, Wei & Yu, Haiquan & Jin, Wei & Chen, Shuo & Liu, Xia, 2023. "A novel NOx emission prediction model for multimodal operational utility boilers considering local features and prior knowledge," Energy, Elsevier, vol. 280(C).
- Hyuk Choi & Ju-Hong Lee & Ji-Hoon Yu & Un-Chul Moon & Mi-Jong Kim & Kwang Y. Lee, 2023. "One-Step Ahead Control Using Online Interpolated Transfer Function for Supplementary Control of Air-Fuel Ratio in Thermal Power Plants," Energies, MDPI, vol. 16(21), pages 1-18, November.
- Sang-Mok Lee & So-Won Choi & Eul-Bum Lee, 2023. "Prediction Modeling of Flue Gas Control for Combustion Efficiency Optimization for Steel Mill Power Plant Boilers Based on Partial Least Squares Regression (PLSR)," Energies, MDPI, vol. 16(19), pages 1-33, September.
More about this item
Keywords
combustion optimization; adaptive least squares support vector machine (ALSSVM); dynamic model; industrial application;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5289-:d:868375. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.