Numerical investigation of pressure and H2O dilution effects on NO formation and reduction pathways in pure hydrogen MILD combustion
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2023.121736
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Cai, Tao & Zhao, Dan, 2022. "Enhancing and assessing ammonia-air combustion performance by blending with dimethyl ether," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
- Zhao, Dan & Li, Shen & Zhao, He, 2016. "Entropy-involved energy measure study of intrinsic thermoacoustic oscillations," Applied Energy, Elsevier, vol. 177(C), pages 570-578.
- Arghode, Vaibhav K. & Gupta, Ashwani K., 2010. "Effect of flow field for colorless distributed combustion (CDC) for gas turbine combustion," Applied Energy, Elsevier, vol. 87(5), pages 1631-1640, May.
- Kruse, Stephan & Kerschgens, Bruno & Berger, Lukas & Varea, Emilien & Pitsch, Heinz, 2015. "Experimental and numerical study of MILD combustion for gas turbine applications," Applied Energy, Elsevier, vol. 148(C), pages 456-465.
- Jonsson, Maria & Yan, Jinyue, 2005. "Humidified gas turbines—a review of proposed and implemented cycles," Energy, Elsevier, vol. 30(7), pages 1013-1078.
- Xing, Fei & Kumar, Arvind & Huang, Yue & Chan, Shining & Ruan, Can & Gu, Sai & Fan, Xiaolei, 2017. "Flameless combustion with liquid fuel: A review focusing on fundamentals and gas turbine application," Applied Energy, Elsevier, vol. 193(C), pages 28-51.
- Zornek, T. & Monz, T. & Aigner, M., 2015. "Performance analysis of the micro gas turbine Turbec T100 with a new FLOX-combustion system for low calorific fuels," Applied Energy, Elsevier, vol. 159(C), pages 276-284.
- Khidr, Kareem I. & Eldrainy, Yehia A. & EL-Kassaby, Mohamed M., 2017. "Towards lower gas turbine emissions: Flameless distributed combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1237-1266.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Tian, Junjian & Liu, Xiang & Shi, Hao & Yao, Yurou & Ni, Zhanshi & Meng, Kengsheng & Hu, Peng & Lin, Qizhao, 2024. "Experimental study on MILD combustion of methane under non-preheated condition in a swirl combustion furnace," Applied Energy, Elsevier, vol. 363(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
- Yang, Xiao & He, Zhihong & Qiu, Penghua & Dong, Shikui & Tan, Heping, 2019. "Numerical investigations on combustion and emission characteristics of a novel elliptical jet-stabilized model combustor," Energy, Elsevier, vol. 170(C), pages 1082-1097.
- Khalil, Ahmed E.E. & Gupta, Ashwani K., 2018. "Fostering distributed combustion in a swirl burner using prevaporized liquid fuels," Applied Energy, Elsevier, vol. 211(C), pages 513-522.
- Sorrentino, Giancarlo & Sabia, Pino & Bozza, Pio & Ragucci, Raffaele & de Joannon, Mara, 2017. "Impact of external operating parameters on the performance of a cyclonic burner with high level of internal recirculation under MILD combustion conditions," Energy, Elsevier, vol. 137(C), pages 1167-1174.
- Cai, Tao & Zhao, Dan & Chan, Siew Hwa & Shahsavari, Mohammad, 2022. "Tailoring reduced mechanisms for predicting flame propagation and ignition characteristics in ammonia and ammonia/hydrogen mixtures," Energy, Elsevier, vol. 260(C).
- Shen, Wenkai & Xing, Chang & Liu, Haiqing & Liu, Li & Hu, Qiming & Wu, Guohua & Yang, Yujia & Wu, Shaohua & Qiu, Penghua, 2022. "Exhaust gas recirculation effects on flame heat release rate distribution and dynamic characteristics in a micro gas turbine," Energy, Elsevier, vol. 249(C).
- Tu, Yaojie & Xu, Shunta & Xu, Mingchen & Liu, Hao & Yang, Wenming, 2020. "Numerical study of methane combustion under moderate or intense low-oxygen dilution regime at elevated pressure conditions up to 8 atm," Energy, Elsevier, vol. 197(C).
- Ma, Ying & Yang, Heng & Zuo, Hongyan & Ma, Yi & Zuo, Qingsong & Chen, Ying & He, Xiaoxiang & Wei, Rongrong, 2023. "Three-dimensional EG@MOF matrix composite phase change materials for high efficiency battery cooling," Energy, Elsevier, vol. 278(C).
- Tan, Dongli & Wu, Yao & Lv, Junshuai & Li, Jian & Ou, Xiaoyu & Meng, Yujun & Lan, Guanglin & Chen, Yanhui & Zhang, Zhiqing, 2023. "Performance optimization of a diesel engine fueled with hydrogen/biodiesel with water addition based on the response surface methodology," Energy, Elsevier, vol. 263(PC).
- Tian, Junjian & Liu, Xiang & Shi, Hao & Yao, Yurou & Ni, Zhanshi & Meng, Kengsheng & Hu, Peng & Lin, Qizhao, 2024. "Experimental study on MILD combustion of methane under non-preheated condition in a swirl combustion furnace," Applied Energy, Elsevier, vol. 363(C).
- Tyliszczak, Artur & Boguslawski, Andrzej & Nowak, Dariusz, 2016. "Numerical simulations of combustion process in a gas turbine with a single and multi-point fuel injection system," Applied Energy, Elsevier, vol. 174(C), pages 153-165.
- Kuban, Lukasz & Stempka, Jakub & Tyliszczak, Artur, 2019. "A 3D-CFD study of a γ-type Stirling engine," Energy, Elsevier, vol. 169(C), pages 142-159.
- Renzi, Massimiliano & Patuzzi, Francesco & Baratieri, Marco, 2017. "Syngas feed of micro gas turbines with steam injection: Effects on performance, combustion and pollutants formation," Applied Energy, Elsevier, vol. 206(C), pages 697-707.
- Li, Zhiyi & Ferrarotti, Marco & Cuoci, Alberto & Parente, Alessandro, 2018. "Finite-rate chemistry modelling of non-conventional combustion regimes using a Partially-Stirred Reactor closure: Combustion model formulation and implementation details," Applied Energy, Elsevier, vol. 225(C), pages 637-655.
- Han, Dandan & Deng, Yuanwang & E, Jiaqiang & Feng, Changling & Tan, Yan, 2023. "Experimental and simulation study on Fe-beta controlling of hydrocarbon emission during cold start of gasoline vehicle world light vehicle test cycle," Energy, Elsevier, vol. 277(C).
- Pramanik, Santanu & Ravikrishna, R.V., 2020. "Investigation of novel scaling criteria on a reverse-flow combustor," Energy, Elsevier, vol. 206(C).
- Marius Zoder & Janosch Balke & Mathias Hofmann & George Tsatsaronis, 2018. "Simulation and Exergy Analysis of Energy Conversion Processes Using a Free and Open-Source Framework—Python-Based Object-Oriented Programming for Gas- and Steam Turbine Cycles," Energies, MDPI, vol. 11(10), pages 1-19, September.
- Sharma, Saurabh & Singh, Paramvir & Gupta, Ashish & Chowdhury, Arindrajit & Khandelwal, Bhupendra & Kumar, Sudarshan, 2020. "Distributed combustion mode in a can-type gas turbine combustor – A numerical and experimental study," Applied Energy, Elsevier, vol. 277(C).
- Han, Dandan & E, Jiaqiang & Feng, Changling & Han, Chang & Kou, Chuanfu & Tan, Yan & Peng, Yanchun & Wei, Lingyun, 2024. "Experimental and simulation investigation on the different iron content beta zeolite for controlling the cold-start hydrocarbon emission from a gasoline vehicle," Energy, Elsevier, vol. 294(C).
- Valentina Fortunato & Andreas Giraldo & Mehdi Rouabah & Rabia Nacereddine & Michel Delanaye & Alessandro Parente, 2018. "Experimental and Numerical Investigation of a MILD Combustion Chamber for Micro Gas Turbine Applications," Energies, MDPI, vol. 11(12), pages 1-21, December.
More about this item
Keywords
MILD combustion; Opposed-flow flame; Hydrogen; Pressure; H2O dilution; NO reaction pathway;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:350:y:2023:i:c:s0306261923011005. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.