Modelling and control of advanced adiabatic compressed air energy storage under power tracking mode considering off-design generating conditions
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2020.119525
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Rehman, Shafiqur & Al-Hadhrami, Luai M. & Alam, Md. Mahbub, 2015. "Pumped hydro energy storage system: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 586-598.
- Cai, Wei & Mohammaditab, Rasoul & Fathi, Gholamreza & Wakil, Karzan & Ebadi, Abdol Ghaffar & Ghadimi, Noradin, 2019. "Optimal bidding and offering strategies of compressed air energy storage: A hybrid robust-stochastic approach," Renewable Energy, Elsevier, vol. 143(C), pages 1-8.
- Rouindej, Kamyar & Samadani, Ehsan & Fraser, Roydon A., 2020. "A comprehensive data-driven study of electrical power grid and its implications for the design, performance, and operational requirements of adiabatic compressed air energy storage systems," Applied Energy, Elsevier, vol. 257(C).
- Mason, James E. & Archer, Cristina L., 2012. "Baseload electricity from wind via compressed air energy storage (CAES)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1099-1109.
- Luo, Xing & Dooner, Mark & He, Wei & Wang, Jihong & Li, Yaowang & Li, Decai & Kiselychnyk, Oleh, 2018. "Feasibility study of a simulation software tool development for dynamic modelling and transient control of adiabatic compressed air energy storage with its electrical power system applications," Applied Energy, Elsevier, vol. 228(C), pages 1198-1219.
- Pires, Thiago S. & Cruz, Manuel E. & Colaço, Marcelo J. & Alves, Marco A.C., 2018. "Application of nonlinear multivariable model predictive control to transient operation of a gas turbine and NOX emissions reduction," Energy, Elsevier, vol. 149(C), pages 341-353.
- Chen, Shang & Arabkoohsar, Ahmad & Zhu, Tong & Nielsen, Mads Pagh, 2020. "Development of a micro-compressed air energy storage system model based on experiments," Energy, Elsevier, vol. 197(C).
- Haisheng Chen & Xinjing Zhang & Jinchao Liu & Chunqing Tan, 2013. "Compressed Air Energy Storage," Chapters, in: Ahmed F. Zobaa (ed.), Energy Storage - Technologies and Applications, IntechOpen.
- Ma, Xin & Zhang, Chenghui & Li, Ke & Li, Fan & Wang, Haiyang & Chen, Jianfei, 2020. "Optimal dispatching strategy of regional micro energy system with compressed air energy storage," Energy, Elsevier, vol. 212(C).
- Wang, Sixian & Zhang, Xuelin & Yang, Luwei & Zhou, Yuan & Wang, Junjie, 2016. "Experimental study of compressed air energy storage system with thermal energy storage," Energy, Elsevier, vol. 103(C), pages 182-191.
- Bai, Jiayu & Wei, Wei & Chen, Laijun & Mei, Shengwei, 2020. "Modeling and dispatch of advanced adiabatic compressed air energy storage under wide operating range in distribution systems with renewable generation," Energy, Elsevier, vol. 206(C).
- Li, Ruixiong & Wang, Huanran & Zhang, Haoran, 2019. "Dynamic simulation of a cooling, heating and power system based on adiabatic compressed air energy storage," Renewable Energy, Elsevier, vol. 138(C), pages 326-339.
- He, Qing & Li, Guoqing & Lu, Chang & Du, Dongmei & Liu, Wenyi, 2019. "A compressed air energy storage system with variable pressure ratio and its operation control," Energy, Elsevier, vol. 169(C), pages 881-894.
- Zhao, Pan & Gao, Lin & Wang, Jiangfeng & Dai, Yiping, 2016. "Energy efficiency analysis and off-design analysis of two different discharge modes for compressed air energy storage system using axial turbines," Renewable Energy, Elsevier, vol. 85(C), pages 1164-1177.
- Luo, Xing & Wang, Jihong & Krupke, Christopher & Wang, Yue & Sheng, Yong & Li, Jian & Xu, Yujie & Wang, Dan & Miao, Shihong & Chen, Haisheng, 2016. "Modelling study, efficiency analysis and optimisation of large-scale Adiabatic Compressed Air Energy Storage systems with low-temperature thermal storage," Applied Energy, Elsevier, vol. 162(C), pages 589-600.
- Han, Zhonghe & Guo, Senchuang, 2018. "Investigation of operation strategy of combined cooling, heating and power(CCHP) system based on advanced adiabatic compressed air energy storage," Energy, Elsevier, vol. 160(C), pages 290-308.
- Jiang, Runhua & Qin, Frank G.F. & Chen, Baiman & Yang, Xiaoping & Yin, Huibin & Xu, Yongjun, 2019. "Thermodynamic performance analysis, assessment and comparison of an advanced trigenerative compressed air energy storage system under different operation strategies," Energy, Elsevier, vol. 186(C).
- Sciacovelli, Adriano & Li, Yongliang & Chen, Haisheng & Wu, Yuting & Wang, Jihong & Garvey, Seamus & Ding, Yulong, 2017. "Dynamic simulation of Adiabatic Compressed Air Energy Storage (A-CAES) plant with integrated thermal storage – Link between components performance and plant performance," Applied Energy, Elsevier, vol. 185(P1), pages 16-28.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Guo, Huan & Xu, Yujie & Zhu, Yilin & Chen, Haisheng & Lin, Xipeng, 2022. "Unsteady characteristics of compressed air energy storage systems with thermal storage from thermodynamic perspective," Energy, Elsevier, vol. 244(PB).
- Xu, Qingqing & Wu, Yuhang & Zheng, Wenpei & Gong, Yunhua & Dubljevic, Stevan, 2023. "Modeling and dynamic safety control of compressed air energy storage system," Renewable Energy, Elsevier, vol. 208(C), pages 203-213.
- Liu, Qingshan & Liu, Yingwen & Liu, Hongjiang & He, Zhilong & Xue, Xiaodai, 2022. "Comprehensive assessment and performance enhancement of compressed air energy storage: thermodynamic effect of ambient temperature," Renewable Energy, Elsevier, vol. 196(C), pages 84-98.
- Razmi, Amir Reza & Soltani, M. & Ardehali, Armin & Gharali, Kobra & Dusseault, M.B. & Nathwani, Jatin, 2021. "Design, thermodynamic, and wind assessments of a compressed air energy storage (CAES) integrated with two adjacent wind farms: A case study at Abhar and Kahak sites, Iran," Energy, Elsevier, vol. 221(C).
- Wu, Danman & Bai, Jiayu & Wei, Wei & Chen, Laijun & Mei, Shengwei, 2021. "Optimal bidding and scheduling of AA-CAES based energy hub considering cascaded consumption of heat," Energy, Elsevier, vol. 233(C).
- Huang, Jingjian & Xu, Yujie & Guo, Huan & Geng, Xiaoqian & Chen, Haisheng, 2022. "Dynamic performance and control scheme of variable-speed compressed air energy storage," Applied Energy, Elsevier, vol. 325(C).
- Xue, Xiaojun & Li, Jiarui & Liu, Jun & Wu, Yunyun & Chen, Heng & Xu, Gang & Liu, Tong, 2022. "Performance evaluation of a conceptual compressed air energy storage system coupled with a biomass integrated gasification combined cycle," Energy, Elsevier, vol. 247(C).
- Fu, Hailun & Hua, Qingsong & Shi, Juan & Sun, Li, 2023. "Photothermal-assisted scheme design and thermodynamic analysis of advanced adiabatic compressed air energy storage system," Renewable Energy, Elsevier, vol. 215(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wu, Danman & Bai, Jiayu & Wei, Wei & Chen, Laijun & Mei, Shengwei, 2021. "Optimal bidding and scheduling of AA-CAES based energy hub considering cascaded consumption of heat," Energy, Elsevier, vol. 233(C).
- Bai, Jiayu & Wei, Wei & Chen, Laijun & Mei, Shengwei, 2020. "Modeling and dispatch of advanced adiabatic compressed air energy storage under wide operating range in distribution systems with renewable generation," Energy, Elsevier, vol. 206(C).
- Wang, Peizi & Zhao, Pan & Wang, Jiangfeng & Dai, Yiping, 2020. "Performance evaluation of a combined heat and compressed air energy storage system integrated with ORC for scaling up storage capacity purpose," Energy, Elsevier, vol. 190(C).
- He, Yang & MengWang, & Chen, Haisheng & Xu, Yujie & Deng, Jianqiang, 2021. "Thermodynamic research on compressed air energy storage system with turbines under sliding pressure operation," Energy, Elsevier, vol. 222(C).
- He, Wei & Dooner, Mark & King, Marcus & Li, Dacheng & Guo, Songshan & Wang, Jihong, 2021. "Techno-economic analysis of bulk-scale compressed air energy storage in power system decarbonisation," Applied Energy, Elsevier, vol. 282(PA).
- Ma, Xin & Zhang, Chenghui & Li, Ke & Li, Fan & Wang, Haiyang & Chen, Jianfei, 2020. "Optimal dispatching strategy of regional micro energy system with compressed air energy storage," Energy, Elsevier, vol. 212(C).
- Li, Yaowang & Miao, Shihong & Luo, Xing & Yin, Binxin & Han, Ji & Wang, Jihong, 2020. "Dynamic modelling and techno-economic analysis of adiabatic compressed air energy storage for emergency back-up power in supporting microgrid," Applied Energy, Elsevier, vol. 261(C).
- He, Wei & Wang, Jihong, 2018. "Optimal selection of air expansion machine in Compressed Air Energy Storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 77-95.
- Guo, Cong & Xu, Yujie & Zhang, Xinjing & Guo, Huan & Zhou, Xuezhi & Liu, Chang & Qin, Wei & Li, Wen & Dou, Binlin & Chen, Haisheng, 2017. "Performance analysis of compressed air energy storage systems considering dynamic characteristics of compressed air storage," Energy, Elsevier, vol. 135(C), pages 876-888.
- He, Yang & Chen, Haisheng & Xu, Yujie & Deng, Jianqiang, 2018. "Compression performance optimization considering variable charge pressure in an adiabatic compressed air energy storage system," Energy, Elsevier, vol. 165(PB), pages 349-359.
- Yang, Lichao & Cai, Zuansi & Li, Cai & He, Qingcheng & Ma, Yan & Guo, Chaobin, 2020. "Numerical investigation of cycle performance in compressed air energy storage in aquifers," Applied Energy, Elsevier, vol. 269(C).
- Luo, Xing & Dooner, Mark & He, Wei & Wang, Jihong & Li, Yaowang & Li, Decai & Kiselychnyk, Oleh, 2018. "Feasibility study of a simulation software tool development for dynamic modelling and transient control of adiabatic compressed air energy storage with its electrical power system applications," Applied Energy, Elsevier, vol. 228(C), pages 1198-1219.
- Shang Chen & Ahmad Arabkoohsar & Guodong Chen & Mads Pagh Nielsen, 2022. "Optimization of a Hybrid Energy System with District Heating and Cooling Considering Off-Design Characteristics of Components, an Effort on Optimal Compressed Air Energy Storage Integration," Energies, MDPI, vol. 15(13), pages 1-21, June.
- Tong, Zheming & Cheng, Zhewu & Tong, Shuiguang, 2021. "A review on the development of compressed air energy storage in China: Technical and economic challenges to commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Sarmast, Sepideh & Rouindej, Kamyar & Fraser, Roydon A. & Dusseault, Maurice B., 2024. "Optimizing near-adiabatic compressed air energy storage (NA-CAES) systems: Sizing and design considerations," Applied Energy, Elsevier, vol. 357(C).
- Du, Ruxue & He, Yang & Chen, Haisheng & Xu, Yujie & Li, Wen & Deng, Jianqiang, 2022. "Performance and economy of trigenerative adiabatic compressed air energy storage system based on multi-parameter analysis," Energy, Elsevier, vol. 238(PA).
- Guo, Huan & Xu, Yujie & Kang, Haoyuan & Guo, Wenbing & Liu, Yu & Zhang, Xinjing & Zhou, Xuezhi & Chen, Haisheng, 2023. "From theory to practice: Evaluating the thermodynamic design landscape of compressed air energy storage systems," Applied Energy, Elsevier, vol. 352(C).
- Zhou, Shenghui & He, Yang & Chen, Haisheng & Xu, Yujie & Deng, Jianqiang, 2020. "Performance analysis of a novel adiabatic compressed air energy system with ejectors enhanced charging process," Energy, Elsevier, vol. 205(C).
- Guo, Huan & Xu, Yujie & Zhang, Xuehui & Liang, Qi & Wang, Shurui & Chen, Haisheng, 2021. "Dynamic characteristics and control of supercritical compressed air energy storage systems," Applied Energy, Elsevier, vol. 283(C).
- Cheayb, Mohamad & Marin Gallego, Mylène & Tazerout, Mohand & Poncet, Sébastien, 2019. "Modelling and experimental validation of a small-scale trigenerative compressed air energy storage system," Applied Energy, Elsevier, vol. 239(C), pages 1371-1384.
More about this item
Keywords
AA-CAES; Off-design performance; State-space model; DAE constrained Optimization; Set-point control;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:218:y:2021:i:c:s0360544220326323. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.