Effects of slow-pyrolysis conditions on the products yields and properties and on exergy efficiency: A comprehensive assessment for wheat straw
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2020.115842
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chaiwatanodom, Paphonwit & Vivanpatarakij, Supawat & Assabumrungrat, Suttichai, 2014. "Thermodynamic analysis of biomass gasification with CO2 recycle for synthesis gas production," Applied Energy, Elsevier, vol. 114(C), pages 10-17.
- Atienza-Martínez, María & Ábrego, Javier & Mastral, José Francisco & Ceamanos, Jesús & Gea, Gloria, 2018. "Energy and exergy analyses of sewage sludge thermochemical treatment," Energy, Elsevier, vol. 144(C), pages 723-735.
- Prins, M.J. & Ptasinski, K.J., 2005. "Energy and exergy analyses of the oxidation and gasification of carbon," Energy, Elsevier, vol. 30(7), pages 982-1002.
- Saidur, R. & BoroumandJazi, G. & Mekhilef, S. & Mohammed, H.A., 2012. "A review on exergy analysis of biomass based fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1217-1222.
- Akhtar, Javaid & Saidina Amin, NorAishah, 2012. "A review on operating parameters for optimum liquid oil yield in biomass pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5101-5109.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Greco, Gianluca & Canevesi, Rafael L.S. & Di Stasi, Christian & Celzard, Alain & Fierro, Vanessa & Manyà, Joan J., 2022. "Biomass-derived carbons physically activated in one or two steps for CH4/CO2 separation," Renewable Energy, Elsevier, vol. 191(C), pages 122-133.
- Hasan, M.M. & Rasul, M.G. & Ashwath, N. & Khan, M.M.K. & Jahirul, M.I., 2022. "Fast pyrolysis of Beauty Leaf Fruit Husk (BLFH) in an auger reactor: Effect of temperature on the yield and physicochemical properties of BLFH oil," Renewable Energy, Elsevier, vol. 194(C), pages 1098-1109.
- María Videgain & Joan J. Manyà & Mariano Vidal & Eva Cristina Correa & Belén Diezma & Francisco Javier García-Ramos, 2021. "Influence of Feedstock and Final Pyrolysis Temperature on Breaking Strength and Dust Production of Wood-Derived Biochars," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
- Christian Di Stasi & Simona Renda & Gianluca Greco & Belén González & Vincenzo Palma & Joan J. Manyà, 2021. "Wheat-Straw-Derived Activated Biochar as a Renewable Support of Ni-CeO 2 Catalysts for CO 2 Methanation," Sustainability, MDPI, vol. 13(16), pages 1-13, August.
- Baghel, Paramjeet & Sakhiya, Anil Kumar & Kaushal, Priyanka, 2022. "Influence of temperature on slow pyrolysis of Prosopis Juliflora: An experimental and thermodynamic approach," Renewable Energy, Elsevier, vol. 185(C), pages 538-551.
- Anand, Abhijeet & Kumar, Vivek & Kaushal, Priyanka, 2022. "Biochar and its twin benefits: Crop residue management and climate change mitigation in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Parvez, A.M. & Mujtaba, I.M. & Wu, T., 2016. "Energy, exergy and environmental analyses of conventional, steam and CO2-enhanced rice straw gasification," Energy, Elsevier, vol. 94(C), pages 579-588.
- Chen, Wei-Hsin & Lin, Bo-Jhih, 2016. "Characteristics of products from the pyrolysis of oil palm fiber and its pellets in nitrogen and carbon dioxide atmospheres," Energy, Elsevier, vol. 94(C), pages 569-578.
- Ahmed, Gaffer & Kishore, Nanda, 2024. "Synergistic effects on properties of biofuel and biochar produced through co-feed pyrolysis of Erythrina indica and Azadirachta indica biomass," Renewable Energy, Elsevier, vol. 227(C).
- Im-orb, Karittha & Simasatitkul, Lida & Arpornwichanop, Amornchai, 2016. "Techno-economic analysis of the biomass gasification and Fischer–Tropsch integrated process with off-gas recirculation," Energy, Elsevier, vol. 94(C), pages 483-496.
- Francis Chinweuba Eboh & Peter Ahlström & Tobias Richards, 2017. "Exergy Analysis of Solid Fuel-Fired Heat and Power Plants: A Review," Energies, MDPI, vol. 10(2), pages 1-29, February.
- Loha, Chanchal & Chattopadhyay, Himadri & Chatterjee, Pradip K., 2011. "Thermodynamic analysis of hydrogen rich synthetic gas generation from fluidized bed gasification of rice husk," Energy, Elsevier, vol. 36(7), pages 4063-4071.
- Taghizadeh-Alisaraei, Ahmad & Assar, Hossein Alizadeh & Ghobadian, Barat & Motevali, Ali, 2017. "Potential of biofuel production from pistachio waste in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 510-522.
- Peters, Jens F. & Petrakopoulou, Fontina & Dufour, Javier, 2015. "Exergy analysis of synthetic biofuel production via fast pyrolysis and hydroupgrading," Energy, Elsevier, vol. 79(C), pages 325-336.
- Cullen, Jonathan M. & Allwood, Julian M., 2010. "Theoretical efficiency limits for energy conversion devices," Energy, Elsevier, vol. 35(5), pages 2059-2069.
- Ábrego, J. & Atienza-Martínez, M. & Plou, F. & Arauzo, J., 2019. "Heat requirement for fixed bed pyrolysis of beechwood chips," Energy, Elsevier, vol. 178(C), pages 145-157.
- Prabowo, Bayu & Aziz, Muhammad & Umeki, Kentaro & Susanto, Herri & Yan, Mi & Yoshikawa, Kunio, 2015. "CO2-recycling biomass gasification system for highly efficient and carbon-negative power generation," Applied Energy, Elsevier, vol. 158(C), pages 97-106.
- Toghyani, Mahboubeh & Rahimi, Amir, 2015. "Exergy analysis of an industrial unit of catalyst regeneration based on the results of modeling and simulation," Energy, Elsevier, vol. 91(C), pages 1049-1056.
- Ding, Lu & Dai, Zhenghua & Guo, Qinghua & Yu, Guangsuo, 2017. "Effects of in-situ interactions between steam and coal on pyrolysis and gasification characteristics of pulverized coals and coal water slurry," Applied Energy, Elsevier, vol. 187(C), pages 627-639.
- Andrew N. Amenaghawon & Chinedu L. Anyalewechi & Charity O. Okieimen & Heri Septya Kusuma, 2021. "Biomass pyrolysis technologies for value-added products: a state-of-the-art review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14324-14378, October.
- Yi, Qun & Wu, Guo-sheng & Gong, Min-hui & Huang, Yi & Feng, Jie & Hao, Yan-hong & Li, Wen-ying, 2017. "A feasibility study for CO2 recycle assistance with coke oven gas to synthetic natural gas," Applied Energy, Elsevier, vol. 193(C), pages 149-161.
- Perkins, Greg & Bhaskar, Thallada & Konarova, Muxina, 2018. "Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 292-315.
- Ma, Liyang & Goldfarb, Jillian L. & Ma, Qiulin, 2022. "Enabling lower temperature pyrolysis with aqueous ionic liquid pretreatment as a sustainable approach to rice husk conversion to biofuels," Renewable Energy, Elsevier, vol. 198(C), pages 712-722.
- Salem, Ahmed M. & Abd Elbar, Ayman Refat, 2023. "The feasibility and performance of using producer gas as a gasifying medium," Energy, Elsevier, vol. 283(C).
- Saulov, Dmitry N. & Plumb, Ovid A. & Klimenko, A.Y., 2010. "Flame propagation in a gasification channel," Energy, Elsevier, vol. 35(3), pages 1264-1273.
- Patel, Vimal R. & Patel, Darshil & Varia, Nandan S. & Patel, Rajesh N., 2017. "Co-gasification of lignite and waste wood in a pilot-scale (10 kWe) downdraft gasifier," Energy, Elsevier, vol. 119(C), pages 834-844.
More about this item
Keywords
Wheat straw; Slow pyrolysis; Char; Pyrolysis conditions; Energy and exergy analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:279:y:2020:i:c:s0306261920313192. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.