Improving fuel characteristics through torrefaction
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2022.123359
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Luo, Lin & van der Voet, Ester & Huppes, Gjalt, 2009. "An energy analysis of ethanol from cellulosic feedstock-Corn stover," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2003-2011, October.
- Xiong, Shaojun & Zhang, Yufen & Zhuo, Yue & Lestander, Torbjörn & Geladi, Paul, 2010. "Variations in fuel characteristics of corn (Zea mays) stovers: General spatial patterns and relationships to soil properties," Renewable Energy, Elsevier, vol. 35(6), pages 1185-1191.
- Jeeban Poudel & Sea Cheon Oh, 2014. "Effect of Torrefaction on the Properties of Corn Stalk to Enhance Solid Fuel Qualities," Energies, MDPI, vol. 7(9), pages 1-15, August.
- Surroop, Dinesh & Raghoo, Pravesh, 2017. "Energy landscape in Mauritius," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 688-694.
- Prins, Mark J. & Ptasinski, Krzysztof J. & Janssen, Frans J.J.G., 2006. "More efficient biomass gasification via torrefaction," Energy, Elsevier, vol. 31(15), pages 3458-3470.
- Proskurina, Svetlana & Heinimö, Jussi & Schipfer, Fabian & Vakkilainen, Esa, 2017. "Biomass for industrial applications: The role of torrefaction," Renewable Energy, Elsevier, vol. 111(C), pages 265-274.
- Jorge Miguel Carneiro Ribeiro & Radu Godina & João Carlos de Oliveira Matias & Leonel Jorge Ribeiro Nunes, 2018. "Future Perspectives of Biomass Torrefaction: Review of the Current State-Of-The-Art and Research Development," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
- Granados, D.A. & Velásquez, H.I. & Chejne, F., 2014. "Energetic and exergetic evaluation of residual biomass in a torrefaction process," Energy, Elsevier, vol. 74(C), pages 181-189.
- Clausen, Lasse R. & Elmegaard, Brian & Houbak, Niels, 2010. "Technoeconomic analysis of a low CO2 emission dimethyl ether (DME) plant based on gasification of torrefied biomass," Energy, Elsevier, vol. 35(12), pages 4831-4842.
- Pierre-Luc Lizotte & Philippe Savoie & Alain De Champlain, 2015. "Ash Content and Calorific Energy of Corn Stover Components in Eastern Canada," Energies, MDPI, vol. 8(6), pages 1-12, May.
- Uslu, Ayla & Faaij, André P.C. & Bergman, P.C.A., 2008. "Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation," Energy, Elsevier, vol. 33(8), pages 1206-1223.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Peng Liu & Panpan Lang & Ailing Lu & Yanling Li & Xueqin Li & Tanglei Sun & Yantao Yang & Hui Li & Tingzhou Lei, 2022. "Effect of Evolution of Carbon Structure during Torrefaction in Woody Biomass on Thermal Degradation," IJERPH, MDPI, vol. 19(24), pages 1-11, December.
- Paredes, B.M. & Paredes, J.P. & García, R., 2023. "Integration of biocoal in distributed energy systems: A potential case study in the Spanish coal-mining regions," Energy, Elsevier, vol. 263(PC).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Abdulyekeen, Kabir Abogunde & Umar, Ahmad Abulfathi & Patah, Muhamad Fazly Abdul & Daud, Wan Mohd Ashri Wan, 2021. "Torrefaction of biomass: Production of enhanced solid biofuel from municipal solid waste and other types of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
- Hao Luo & Lukasz Niedzwiecki & Amit Arora & Krzysztof Mościcki & Halina Pawlak-Kruczek & Krystian Krochmalny & Marcin Baranowski & Mayank Tiwari & Anshul Sharma & Tanuj Sharma & Zhimin Lu, 2020. "Influence of Torrefaction and Pelletizing of Sawdust on the Design Parameters of a Fixed Bed Gasifier," Energies, MDPI, vol. 13(11), pages 1-19, June.
- Niu, Yanqing & Lv, Yuan & Lei, Yu & Liu, Siqi & Liang, Yang & Wang, Denghui & Hui, Shi'en, 2019. "Biomass torrefaction: properties, applications, challenges, and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
- Barskov, Stan & Zappi, Mark & Buchireddy, Prashanth & Dufreche, Stephen & Guillory, John & Gang, Daniel & Hernandez, Rafael & Bajpai, Rakesh & Baudier, Jeff & Cooper, Robbyn & Sharp, Richard, 2019. "Torrefaction of biomass: A review of production methods for biocoal from cultured and waste lignocellulosic feedstocks," Renewable Energy, Elsevier, vol. 142(C), pages 624-642.
- Clausen, Lasse R., 2014. "Integrated torrefaction vs. external torrefaction – A thermodynamic analysis for the case of a thermochemical biorefinery," Energy, Elsevier, vol. 77(C), pages 597-607.
- Atienza-Martínez, María & Ábrego, Javier & Mastral, José Francisco & Ceamanos, Jesús & Gea, Gloria, 2018. "Energy and exergy analyses of sewage sludge thermochemical treatment," Energy, Elsevier, vol. 144(C), pages 723-735.
- Leonel J. R. Nunes & Jorge M. C. Ribeiro & Letícia C. R. Sá & Liliana M. E. F. Loureiro & Radu Godina & João C. O. Matias, 2020. "Development of a Low-Cost Experimental Procedure for the Production of Laboratory Samples of Torrefied Biomass," Clean Technol., MDPI, vol. 2(4), pages 1-16, October.
- Arkadiusz Dyjakon & Tomasz Noszczyk & Martyna Smędzik, 2019. "The Influence of Torrefaction Temperature on Hydrophobic Properties of Waste Biomass from Food Processing," Energies, MDPI, vol. 12(24), pages 1-17, December.
- Leonel Jorge Ribeiro Nunes & Radu Godina & João Carlos de Oliveira Matias, 2019. "Technological Innovation in Biomass Energy for the Sustainable Growth of Textile Industry," Sustainability, MDPI, vol. 11(2), pages 1-12, January.
- Chai, Li & Saffron, Christopher M., 2016. "Comparing pelletization and torrefaction depots: Optimization of depot capacity and biomass moisture to determine the minimum production cost," Applied Energy, Elsevier, vol. 163(C), pages 387-395.
- Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
- Rousset, P. & Fernandes, K. & Vale, A. & Macedo, L. & Benoist, A., 2013. "Change in particle size distribution of Torrefied biomass during cold fluidization," Energy, Elsevier, vol. 51(C), pages 71-77.
- Agar, David A. & Rudolfsson, Magnus & Lavergne, Simon & Melkior, Thierry & Da Silva Perez, Denilson & Dupont, Capucine & Campargue, Matthieu & Kalén, Gunnar & Larsson, Sylvia H., 2021. "Pelleting torrefied biomass at pilot-scale – Quality and implications for co-firing," Renewable Energy, Elsevier, vol. 178(C), pages 766-774.
- Chen, Wei-Hsin & Kuo, Po-Chih, 2011. "Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis," Energy, Elsevier, vol. 36(11), pages 6451-6460.
- Mirosław Wyszkowski & Natalia Kordala, 2024. "Effects of Humic Acids on Calorific Value and Chemical Composition of Maize Biomass in Iron-Contaminated Soil Phytostabilisation," Energies, MDPI, vol. 17(7), pages 1-19, April.
- Joseph I. Orisaleye & Simeon O. Jekayinfa & Ralf Pecenka & Adebayo A. Ogundare & Michael O. Akinseloyin & Opeyemi L. Fadipe, 2022. "Investigation of the Effects of Torrefaction Temperature and Residence Time on the Fuel Quality of Corncobs in a Fixed-Bed Reactor," Energies, MDPI, vol. 15(14), pages 1-16, July.
- Luis Puigjaner & Mar Pérez-Fortes & José M. Laínez-Aguirre, 2015. "Towards a Carbon-Neutral Energy Sector: Opportunities and Challenges of Coordinated Bioenergy Supply Chains-A PSE Approach," Energies, MDPI, vol. 8(6), pages 1-48, June.
- Jorge Miguel Carneiro Ribeiro & Radu Godina & João Carlos de Oliveira Matias & Leonel Jorge Ribeiro Nunes, 2018. "Future Perspectives of Biomass Torrefaction: Review of the Current State-Of-The-Art and Research Development," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
- Sarkar, Susanjib & Kumar, Amit & Sultana, Arifa, 2011. "Biofuels and biochemicals production from forest biomass in Western Canada," Energy, Elsevier, vol. 36(10), pages 6251-6262.
- Nobre, Catarina & Vilarinho, Cândida & Alves, Octávio & Mendes, Benilde & Gonçalves, Margarida, 2019. "Upgrading of refuse derived fuel through torrefaction and carbonization: Evaluation of RDF char fuel properties," Energy, Elsevier, vol. 181(C), pages 66-76.
More about this item
Keywords
Fuel; Torrefaction; Mass yield; Energy yield;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:246:y:2022:i:c:s0360544222002626. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.