IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v31y2006i15p3458-3470.html
   My bibliography  Save this article

More efficient biomass gasification via torrefaction

Author

Listed:
  • Prins, Mark J.
  • Ptasinski, Krzysztof J.
  • Janssen, Frans J.J.G.

Abstract

Wood torrefaction is a mild pyrolysis process that improves the fuel properties of wood. At temperatures between 230 and 300°C, the hemicellulose fraction of the wood decomposes, so that torrefied wood and volatiles are formed. Mass and energy balances for torrefaction experiments at 250 and 300°C are presented. Advantages of torrefaction as a pre-treatment prior to gasification are demonstrated. Three concepts are compared: air-blown gasification of wood, air-blown gasification of torrefied wood (both at a temperature of 950°C in a circulating fluidized bed) and oxygen-blown gasification of torrefied wood (at a temperature of 1200°C in an entrained flow gasifier), all at atmospheric pressure. The overall exergetic efficiency of air-blown gasification of torrefied wood was found to be lower than that of wood, because the volatiles produced in the torrefaction step are not utilized. For the entrained flow gasifier, the volatiles can be introduced into the hot product gas stream as a ‘chemical quench’. The overall efficiency of such a process scheme is comparable to direct gasification of wood, but more exergy is conserved in as chemical exergy in the product gas (72.6% versus 68.6%). This novel method to improve the efficiency of biomass gasification is promising; therefore, practical demonstration is recommended.

Suggested Citation

  • Prins, Mark J. & Ptasinski, Krzysztof J. & Janssen, Frans J.J.G., 2006. "More efficient biomass gasification via torrefaction," Energy, Elsevier, vol. 31(15), pages 3458-3470.
  • Handle: RePEc:eee:energy:v:31:y:2006:i:15:p:3458-3470
    DOI: 10.1016/j.energy.2006.03.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054420600065X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2006.03.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pentananunt, Ranu & Rahman, A.N.M.Mizanur & Bhattacharya, S.C., 1990. "Upgrading of biomass by means of torrefaction," Energy, Elsevier, vol. 15(12), pages 1175-1179.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Po-Chih Kuo & Wei Wu, 2014. "Design, Optimization and Energetic Efficiency of Producing Hydrogen-Rich Gas from Biomass Steam Gasification," Energies, MDPI, vol. 8(1), pages 1-17, December.
    2. He, Qing & Guo, Qinghua & Umeki, Kentaro & Ding, Lu & Wang, Fuchen & Yu, Guangsuo, 2021. "Soot formation during biomass gasification: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    3. Jorge Miguel Carneiro Ribeiro & Radu Godina & João Carlos de Oliveira Matias & Leonel Jorge Ribeiro Nunes, 2018. "Future Perspectives of Biomass Torrefaction: Review of the Current State-Of-The-Art and Research Development," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    4. Niu, Yanqing & Lv, Yuan & Lei, Yu & Liu, Siqi & Liang, Yang & Wang, Denghui & Hui, Shi'en, 2019. "Biomass torrefaction: properties, applications, challenges, and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    5. Rudolfsson, Magnus & Borén, Eleonora & Pommer, Linda & Nordin, Anders & Lestander, Torbjörn A., 2017. "Combined effects of torrefaction and pelletization parameters on the quality of pellets produced from torrefied biomass," Applied Energy, Elsevier, vol. 191(C), pages 414-424.
    6. Seok-Jun Kim & Kwang-Cheol Oh & Sun-Yong Park & Young-Min Ju & La-Hoon Cho & Chung-Geon Lee & Min-Jun Kim & In-Seon Jeong & Dae-Hyun Kim, 2021. "Development and Validation of Mass Reduction Prediction Model and Analysis of Fuel Properties for Agro-Byproduct Torrefaction," Energies, MDPI, vol. 14(19), pages 1-14, September.
    7. Dimitrios K. Sidiras & Antonios G. Nazos & Georgios E. Giakoumakis & Dorothea V. Politi, 2020. "Simulating the Effect of Torrefaction on the Heating Value of Barley Straw," Energies, MDPI, vol. 13(3), pages 1-15, February.
    8. Chen, Wei-Hsin & Kuo, Po-Chih & Liu, Shih-Hsien & Wu, Wei, 2014. "Thermal characterization of oil palm fiber and eucalyptus in torrefaction," Energy, Elsevier, vol. 71(C), pages 40-48.
    9. Granados, D.A. & Velásquez, H.I. & Chejne, F., 2014. "Energetic and exergetic evaluation of residual biomass in a torrefaction process," Energy, Elsevier, vol. 74(C), pages 181-189.
    10. Piotr Piersa & Hilal Unyay & Szymon Szufa & Wiktoria Lewandowska & Remigiusz Modrzewski & Radosław Ślężak & Stanisław Ledakowicz, 2022. "An Extensive Review and Comparison of Modern Biomass Torrefaction Reactors vs. Biomass Pyrolysis—Part 1," Energies, MDPI, vol. 15(6), pages 1-34, March.
    11. Michael Huang & Chia-Chi Chang & Min-Hao Yuan & Ching-Yuan Chang & Chao-Hsiung Wu & Je-Lueng Shie & Yen-Hau Chen & Yi-Hung Chen & Chungfang Ho & Wei-Ren Chang & Tzu-Yi Yang & Far-Ching Lin, 2017. "Production of Torrefied Solid Bio-Fuel from Pulp Industry Waste," Energies, MDPI, vol. 10(7), pages 1-13, July.
    12. Sunyong Park & Seok Jun Kim & Kwang Cheol Oh & La Hoon Cho & DaeHyun Kim, 2023. "Developing a Proximate Component Prediction Model of Biomass Based on Element Analysis," Energies, MDPI, vol. 16(1), pages 1-14, January.
    13. Park, Sang-Woo & Jang, Cheol-Hyeon, 2012. "Effects of pyrolysis temperature on changes in fuel characteristics of biomass char," Energy, Elsevier, vol. 39(1), pages 187-195.
    14. Ji Young An & Aung Aung & Jonathan Ogayon Hernandez & Jeong Min Seo & Si Ho Han & Byung Bae Park, 2022. "Effects of Torrefied Wood Chips and Vermicompost on Tree Growth and Weed Biomass: Implications for the Sustainable Management of Salt-Affected Reclaimed Lands," Land, MDPI, vol. 11(5), pages 1-11, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:31:y:2006:i:15:p:3458-3470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.