IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v142y2018icp234-249.html
   My bibliography  Save this article

Octadecane/C-decorated diatomite composite phase change material with enhanced thermal conductivity as aggregate for developing structural–functional integrated cement for thermal energy storage

Author

Listed:
  • Qian, Tingting
  • Li, Jinhong

Abstract

Here, we report on the first ever study of an innovative kind of cement composite incorporated with n-octadecane (OC)/diatomite shape-stabilized composite phase change material (PCM). Diatomite decorated with carbon nanoparticles and calcined at 800 °C for 3 h (DC) was considered as the optimum supporting matrix due to its hierarchical porous microstructure and attractive crystallization character. These suborbicular thermal storage media are well dispersed in the cement matrix with excellent compatibility, and do not obviously influence the apparent density and porosity of the cement mortar. Besides, the flexural and compressive strength of the cement mortar with 30% OC/DC could still reach as high as 3.5 MPa and 18.3 MPa, respectively. It is noteworthy that the inclusion of greater amounts of OC/DC resulted in lower thermal conductivity and higher thermal energy storage capacity, while the chemical, mechanical and thermal reliability of cement remained practically stable even when subjected to a 400 melt-freeze cycle. It is found that the prepared heat storage cement mortar is capable of reducing indoor temperature fluctuation and exhibits excellent potential for energy savings and thermal comfort in building applications.

Suggested Citation

  • Qian, Tingting & Li, Jinhong, 2018. "Octadecane/C-decorated diatomite composite phase change material with enhanced thermal conductivity as aggregate for developing structural–functional integrated cement for thermal energy storage," Energy, Elsevier, vol. 142(C), pages 234-249.
  • Handle: RePEc:eee:energy:v:142:y:2018:i:c:p:234-249
    DOI: 10.1016/j.energy.2017.10.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217316900
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.10.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Memon, Shazim Ali, 2014. "Phase change materials integrated in building walls: A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 870-906.
    2. Park, Sangki & Woo, Seungchul & Shon, Jungwook & Lee, Kihyung, 2017. "Experimental study on heat storage system using phase-change material in a diesel engine," Energy, Elsevier, vol. 119(C), pages 1108-1118.
    3. Li, Huiqiang & Chen, Huisu & Li, Xiangyu & Sanjayan, Jay G., 2014. "Development of thermal energy storage composites and prevention of PCM leakage," Applied Energy, Elsevier, vol. 135(C), pages 225-233.
    4. Xu, Biwan & Li, Zongjin, 2014. "Performance of novel thermal energy storage engineered cementitious composites incorporating a paraffin/diatomite composite phase change material," Applied Energy, Elsevier, vol. 121(C), pages 114-122.
    5. Zhang, Zhengguo & Shi, Guoquan & Wang, Shuping & Fang, Xiaoming & Liu, Xiaohong, 2013. "Thermal energy storage cement mortar containing n-octadecane/expanded graphite composite phase change material," Renewable Energy, Elsevier, vol. 50(C), pages 670-675.
    6. Johra, Hicham & Heiselberg, Per, 2017. "Influence of internal thermal mass on the indoor thermal dynamics and integration of phase change materials in furniture for building energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 19-32.
    7. Liang, Shuen & Li, Qianbiao & Zhu, Yalin & Chen, Keping & Tian, Chunrong & Wang, Jianhua & Bai, Ruke, 2015. "Nanoencapsulation of n-octadecane phase change material with silica shell through interfacial hydrolysis and polycondensation in miniemulsion," Energy, Elsevier, vol. 93(P2), pages 1684-1692.
    8. Zhang, Lei & Zhu, Jiaoqun & Zhou, Weibing & Wang, Jun & Wang, Yan, 2012. "Thermal and electrical conductivity enhancement of graphite nanoplatelets on form-stable polyethylene glycol/polymethyl methacrylate composite phase change materials," Energy, Elsevier, vol. 39(1), pages 294-302.
    9. Cao, Lei & Tang, Yaojie & Fang, Guiyin, 2015. "Preparation and properties of shape-stabilized phase change materials based on fatty acid eutectics and cellulose composites for thermal energy storage," Energy, Elsevier, vol. 80(C), pages 98-103.
    10. Lin, Wenye & Ma, Zhenjun, 2016. "Using Taguchi-Fibonacci search method to optimize phase change materials enhanced buildings with integrated solar photovoltaic thermal collectors," Energy, Elsevier, vol. 106(C), pages 23-37.
    11. Parameshwaran, R. & Kalaiselvam, S. & Harikrishnan, S. & Elayaperumal, A., 2012. "Sustainable thermal energy storage technologies for buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2394-2433.
    12. Zhang, He & Xing, Feng & Cui, Hong-Zhi & Chen, Da-Zhu & Ouyang, Xing & Xu, Su-Zhen & Wang, Jia-Xin & Huang, Yi-Tian & Zuo, Jian-Dong & Tang, Jiao-Ning, 2016. "A novel phase-change cement composite for thermal energy storage: Fabrication, thermal and mechanical properties," Applied Energy, Elsevier, vol. 170(C), pages 130-139.
    13. Li, Wei & Zhang, Rong & Jiang, Nan & Tang, Xiao-fen & Shi, Hai-feng & Zhang, Xing-xiang & Zhang, Yuankai & Dong, Lin & Zhang, Ningxin, 2013. "Composite macrocapsule of phase change materials/expanded graphite for thermal energy storage," Energy, Elsevier, vol. 57(C), pages 607-614.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Musavi, Seyed Mostapha & Barahuie, Farahnaz & Irani, Mohsen & Safamanesh, Ali & Malekpour, Abdurahman, 2021. "Enhanced properties of phase change material -SiO2-graphene nanocomposite for developing structural–functional integrated cement for solar energy absorption and storage," Renewable Energy, Elsevier, vol. 174(C), pages 918-927.
    2. Hongzhi Cui & Shiheng Yu & Xiangpeng Cao & Haibin Yang, 2022. "Evaluation of Printability and Thermal Properties of 3D Printed Concrete Mixed with Phase Change Materials," Energies, MDPI, vol. 15(6), pages 1-16, March.
    3. Sun, Jingmeng & Zhao, Junqi & Zhang, Weiye & Xu, Jianuo & Wang, Beibei & Wang, Xuanye & Zhou, Jun & Guo, Hongwu & Liu, Yi, 2023. "Composites with a Novel Core–shell Structural Expanded Perlite/Polyethylene glycol Composite PCM as Novel Green Energy Storage Composites for Building Energy Conservation," Applied Energy, Elsevier, vol. 330(PA).
    4. Li, Min & Yan, Dandan & Shi, Junbing, 2022. "Multi-scale simulation study on the heat transfer characteristics of phase-change walls," Energy, Elsevier, vol. 259(C).
    5. Yang, Guokun & Liu, Tianle & Aleksandravih, Blinov Pavel & Wang, Yazhou & Feng, Yingtao & Wen, Dayang & Fang, Changliang, 2022. "Temperature regulation effect of low melting point phase change microcapsules for cement slurry in nature gas hydrate-bearing sediments," Energy, Elsevier, vol. 253(C).
    6. Ren, Miao & Liu, Yushi & Gao, Xiaojian, 2020. "Incorporation of phase change material and carbon nanofibers into lightweight aggregate concrete for thermal energy regulation in buildings," Energy, Elsevier, vol. 197(C).
    7. Hekimoğlu, Gökhan & Nas, Memduh & Ouikhalfan, Mohammed & Sarı, Ahmet & Tyagi, V.V. & Sharma, R.K. & Kurbetci, Şirin & Saleh, Tawfik A., 2021. "Silica fume/capric acid-stearic acid PCM included-cementitious composite for thermal controlling of buildings: Thermal energy storage and mechanical properties," Energy, Elsevier, vol. 219(C).
    8. Geng, Xiaoye & Li, Wei & Yin, Qing & Wang, Yu & Han, Na & Wang, Ning & Bian, Junmin & Wang, Jianping & Zhang, Xingxiang, 2018. "Design and fabrication of reversible thermochromic microencapsulated phase change materials for thermal energy storage and its antibacterial activity," Energy, Elsevier, vol. 159(C), pages 857-869.
    9. Xiaoling Cui & Xiaoyun Du & Yanzhou Cao & Guochen Sang & Yangkai Zhang & Lei Zhang & Yiyun Zhu, 2020. "Thermophysical Properties Characterization of Sulphoaluminate Cement Mortars Incorporating Phase Change Material for Thermal Energy Storage," Energies, MDPI, vol. 13(19), pages 1-17, September.
    10. Ren, Miao & Zhao, Hua & Gao, Xiaojian, 2022. "Effect of modified diatomite based shape-stabilized phase change materials on multiphysics characteristics of thermal storage mortar," Energy, Elsevier, vol. 241(C).
    11. Yang, Haiyue & Wang, Yazhou & Yu, Qianqian & Cao, Guoliang & Sun, Xiaohan & Yang, Rue & Zhang, Qiong & Liu, Feng & Di, Xin & Li, Jian & Wang, Chengyu & Li, Guoliang, 2018. "Low-cost, three-dimension, high thermal conductivity, carbonized wood-based composite phase change materials for thermal energy storage," Energy, Elsevier, vol. 159(C), pages 929-936.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung & Eddhahak, Anissa, 2019. "A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 467-484.
    2. Peng, Lihua & Chao, Luomeng & Xu, Ziqing & Yang, Haibin & Zheng, Dapeng & Wei, Boxuan & Sun, Changwei & Cui, Hongzhi, 2022. "High-efficiency energy-saving buildings utilizing potassium tungsten bronze heat-insulating glass and polyethylene glycol/expanded energy storage blanket," Energy, Elsevier, vol. 255(C).
    3. Xiong, Teng & Shah, Kwok Wei & Kua, Harn Wei, 2021. "Thermal performance enhancement of cementitious composite containing polystyrene/n-octadecane microcapsules: An experimental and numerical study," Renewable Energy, Elsevier, vol. 169(C), pages 335-357.
    4. Ramakrishnan, Sayanthan & Wang, Xiaoming & Sanjayan, Jay & Wilson, John, 2017. "Thermal performance assessment of phase change material integrated cementitious composites in buildings: Experimental and numerical approach," Applied Energy, Elsevier, vol. 207(C), pages 654-664.
    5. Zeinelabdein, Rami & Omer, Siddig & Gan, Guohui, 2018. "Critical review of latent heat storage systems for free cooling in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2843-2868.
    6. Li, Min & Mu, Boyuan, 2019. "Effect of different dimensional carbon materials on the properties and application of phase change materials: A review," Applied Energy, Elsevier, vol. 242(C), pages 695-715.
    7. Zhang, P. & Xiao, X. & Ma, Z.W., 2016. "A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement," Applied Energy, Elsevier, vol. 165(C), pages 472-510.
    8. Xu, Biwan & Li, Zongjin, 2014. "Paraffin/diatomite/multi-wall carbon nanotubes composite phase change material tailor-made for thermal energy storage cement-based composites," Energy, Elsevier, vol. 72(C), pages 371-380.
    9. Ohayon-Lavi, Avia & Lavi, Adi & Alatawna, Amr & Ruse, Efrat & Ziskind, Gennady & Regev, Oren, 2021. "Graphite-based shape-stabilized composites for phase change material applications," Renewable Energy, Elsevier, vol. 167(C), pages 580-590.
    10. Mingli Li & Guoqing Gui & Zhibin Lin & Long Jiang & Hong Pan & Xingyu Wang, 2018. "Numerical Thermal Characterization and Performance Metrics of Building Envelopes Containing Phase Change Materials for Energy-Efficient Buildings," Sustainability, MDPI, vol. 10(8), pages 1-23, July.
    11. Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung, 2020. "Thermal performance of a solar energy storage concrete panel incorporating phase change material aggregates developed for thermal regulation in buildings," Renewable Energy, Elsevier, vol. 160(C), pages 817-829.
    12. Darzi, Mohammad Ebrahimnejad & Golestaneh, Seyyed Iman & Kamali, Marziyeh & Karimi, Gholamreza, 2019. "Thermal and electrical performance analysis of co-electrospun-electrosprayed PCM nanofiber composites in the presence of graphene and carbon fiber powder," Renewable Energy, Elsevier, vol. 135(C), pages 719-728.
    13. Memon, Shazim Ali & Cui, H.Z. & Zhang, Hang & Xing, Feng, 2015. "Utilization of macro encapsulated phase change materials for the development of thermal energy storage and structural lightweight aggregate concrete," Applied Energy, Elsevier, vol. 139(C), pages 43-55.
    14. Cheng, Wenlong & Xie, Biao & Zhang, Rongming & Xu, Zhiming & Xia, Yuting, 2015. "Effect of thermal conductivities of shape stabilized PCM on under-floor heating system," Applied Energy, Elsevier, vol. 144(C), pages 10-18.
    15. Ramakrishnan, Sayanthan & Sanjayan, Jay & Wang, Xiaoming & Alam, Morshed & Wilson, John, 2015. "A novel paraffin/expanded perlite composite phase change material for prevention of PCM leakage in cementitious composites," Applied Energy, Elsevier, vol. 157(C), pages 85-94.
    16. Yousefi, Ali & Tang, Waiching & Khavarian, Mehrnoush & Fang, Cheng, 2021. "Development of novel form-stable phase change material (PCM) composite using recycled expanded glass for thermal energy storage in cementitious composite," Renewable Energy, Elsevier, vol. 175(C), pages 14-28.
    17. Chandel, S.S. & Agarwal, Tanya, 2017. "Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 581-596.
    18. Khadiran, Tumirah & Hussein, Mohd Zobir & Zainal, Zulkarnain & Rusli, Rafeadah, 2016. "Advanced energy storage materials for building applications and their thermal performance characterization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 916-928.
    19. Soares, N. & Santos, P. & Gervásio, H. & Costa, J.J. & Simões da Silva, L., 2017. "Energy efficiency and thermal performance of lightweight steel-framed (LSF) construction: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 194-209.
    20. Memon, Shazim Ali & Cui, Hongzhi & Lo, Tommy Y. & Li, Qiusheng, 2015. "Development of structural–functional integrated concrete with macro-encapsulated PCM for thermal energy storage," Applied Energy, Elsevier, vol. 150(C), pages 245-257.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:142:y:2018:i:c:p:234-249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.