IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v39y2012i1p294-302.html
   My bibliography  Save this article

Thermal and electrical conductivity enhancement of graphite nanoplatelets on form-stable polyethylene glycol/polymethyl methacrylate composite phase change materials

Author

Listed:
  • Zhang, Lei
  • Zhu, Jiaoqun
  • Zhou, Weibing
  • Wang, Jun
  • Wang, Yan

Abstract

Graphite nanoplatelets (GnPs), obtained by sonicating the expanded graphite, were employed to simultaneously enhance the thermal (k) and electrical (σ) conductivity of organic form-stable phase change materials (FSPCMs). Using the method of in situ polymerization upon ultrasonic irradiation, GnPs serving as the conductive fillers and polyethylene glycol (PEG) acting as the phase change material (PCM) were uniformly dispersed and embedded inside the network structure of polymethyl methacrylate (PMMA), which contributed to the well package and self-supporting properties of composite FSPCMs. X-ray diffraction and Fourier transform infrared spectroscopy results indicated that the GnPs were physically combined with PEG/PMMA matrix and did not participate in the polymerization. The GnPs additives were able to effectively enhance the k and σ of organic FSPCM. When the mass ratio of GnP was 8%, the k and σ of FSPCM changed up to 9 times and 8 orders of magnitude over that of PEG/PMMA matrix, respectively. The improvements in both k and σ were mainly attributed to the well dispersion and large aspect ratio of GnPs, which were endowed with benefit of forming conducting network in polymer matrix. It was also confirmed that all the prepared specimens possessed available thermal storage density and thermal stability.

Suggested Citation

  • Zhang, Lei & Zhu, Jiaoqun & Zhou, Weibing & Wang, Jun & Wang, Yan, 2012. "Thermal and electrical conductivity enhancement of graphite nanoplatelets on form-stable polyethylene glycol/polymethyl methacrylate composite phase change materials," Energy, Elsevier, vol. 39(1), pages 294-302.
  • Handle: RePEc:eee:energy:v:39:y:2012:i:1:p:294-302
    DOI: 10.1016/j.energy.2012.01.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212000163
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.01.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. SarI, Ahmet & Alkan, Cemil & Karaipekli, Ali, 2010. "Preparation, characterization and thermal properties of PMMA/n-heptadecane microcapsules as novel solid-liquid microPCM for thermal energy storage," Applied Energy, Elsevier, vol. 87(5), pages 1529-1534, May.
    2. Tunçbilek, Kadir & Sari, Ahmet & Tarhan, Sefa & Ergüneş, Gazanfer & Kaygusuz, Kamil, 2005. "Lauric and palmitic acids eutectic mixture as latent heat storage material for low temperature heating applications," Energy, Elsevier, vol. 30(5), pages 677-692.
    3. Mettawee, Eman-Bellah S. & Assassa, Ghazy M.R., 2006. "Experimental study of a compact PCM solar collector," Energy, Elsevier, vol. 31(14), pages 2958-2968.
    4. Cabeza, L.F. & Castell, A. & Barreneche, C. & de Gracia, A. & Fernández, A.I., 2011. "Materials used as PCM in thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1675-1695, April.
    5. Li, Wei & Song, Guolin & Tang, Guoyi & Chu, Xiaodong & Ma, Sude & Liu, Caifeng, 2011. "Morphology, structure and thermal stability of microencapsulated phase change material with copolymer shell," Energy, Elsevier, vol. 36(2), pages 785-791.
    6. Yin, Huibin & Gao, Xuenong & Ding, Jing & Zhang, Zhengguo & Fang, Yutang, 2010. "Thermal management of electronic components with thermal adaptation composite material," Applied Energy, Elsevier, vol. 87(12), pages 3784-3791, December.
    7. Song, Guolin & Ma, Sude & Tang, Guoyi & Yin, Zhansong & Wang, Xiaowei, 2010. "Preparation and characterization of flame retardant form-stable phase change materials composed by EPDM, paraffin and nano magnesium hydroxide," Energy, Elsevier, vol. 35(5), pages 2179-2183.
    8. He, Bo & Martin, Viktoria & Setterwall, Fredrik, 2004. "Phase transition temperature ranges and storage density of paraffin wax phase change materials," Energy, Elsevier, vol. 29(11), pages 1785-1804.
    9. Fang, Guiyin & Li, Hui & Chen, Zhi & Liu, Xu, 2010. "Preparation and characterization of stearic acid/expanded graphite composites as thermal energy storage materials," Energy, Elsevier, vol. 35(12), pages 4622-4626.
    10. Xia, L. & Zhang, P. & Wang, R.Z., 2010. "Numerical heat transfer analysis of the packed bed latent heat storage system based on an effective packed bed model," Energy, Elsevier, vol. 35(5), pages 2022-2032.
    11. Sharma, Atul & Tyagi, V.V. & Chen, C.R. & Buddhi, D., 2009. "Review on thermal energy storage with phase change materials and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 318-345, February.
    12. Kim, Ki-bum & Choi, Kyung-wook & Kim, Young-jin & Lee, Ki-hyung & Lee, Kwan-soo, 2010. "Feasibility study on a novel cooling technique using a phase change material in an automotive engine," Energy, Elsevier, vol. 35(1), pages 478-484.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abden, Md Jaynul & Tao, Zhong & Pan, Zhu & George, Laurel & Wuhrer, Richard, 2020. "Inclusion of methyl stearate/diatomite composite in gypsum board ceiling for building energy conservation," Applied Energy, Elsevier, vol. 259(C).
    2. Tahan Latibari, Sara & Mehrali, Mohammad & Mehrali, Mehdi & Afifi, Amalina Binti Muhammad & Mahlia, Teuku Meurah Indra & Akhiani, Amir Reza & Metselaar, Hendrik Simon Cornelis, 2015. "Facile synthesis and thermal performances of stearic acid/titania core/shell nanocapsules by sol–gel method," Energy, Elsevier, vol. 85(C), pages 635-644.
    3. Parameshwaran, R. & Kalaiselvam, S., 2013. "Energy efficient hybrid nanocomposite-based cool thermal storage air conditioning system for sustainable buildings," Energy, Elsevier, vol. 59(C), pages 194-214.
    4. Parameshwaran, R. & Deepak, K. & Saravanan, R. & Kalaiselvam, S., 2014. "Preparation, thermal and rheological properties of hybrid nanocomposite phase change material for thermal energy storage," Applied Energy, Elsevier, vol. 115(C), pages 320-330.
    5. Qian, Tingting & Li, Jinhong, 2018. "Octadecane/C-decorated diatomite composite phase change material with enhanced thermal conductivity as aggregate for developing structural–functional integrated cement for thermal energy storage," Energy, Elsevier, vol. 142(C), pages 234-249.
    6. Samimi, Fereshteh & Babapoor, Aziz & Azizi, Mohammadmehdi & Karimi, Gholamreza, 2016. "Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers," Energy, Elsevier, vol. 96(C), pages 355-371.
    7. SK Manirul Haque & Jorge Alfredo Ardila-Rey & Yunusa Umar & Abdullahi Abubakar Mas’ud & Firdaus Muhammad-Sukki & Binta Hadi Jume & Habibur Rahman & Nurul Aini Bani, 2021. "Application and Suitability of Polymeric Materials as Insulators in Electrical Equipment," Energies, MDPI, vol. 14(10), pages 1-29, May.
    8. Zeng, Ju-Lan & Zheng, Shuang-Hao & Yu, Sai-Bo & Zhu, Fu-Rong & Gan, Juan & Zhu, Ling & Xiao, Zhong-Liang & Zhu, Xin-Yu & Zhu, Zhen & Sun, Li-Xian & Cao, Zhong, 2014. "Preparation and thermal properties of palmitic acid/polyaniline/exfoliated graphite nanoplatelets form-stable phase change materials," Applied Energy, Elsevier, vol. 115(C), pages 603-609.
    9. Tang, Xiaofen & Li, Wei & Zhang, Xingxiang & Shi, Haifeng, 2014. "Fabrication and characterization of microencapsulated phase change material with low supercooling for thermal energy storage," Energy, Elsevier, vol. 68(C), pages 160-166.
    10. Wang, Xingxing & Li, Huajiao & Yao, Huajun & Chen, Zhihua & Guan, Qing, 2019. "Network feature and influence factors of global nature graphite trade competition," Resources Policy, Elsevier, vol. 60(C), pages 153-161.
    11. Wang, Xingxing & Li, Huajiao & Zhu, Depeng & Zhong, Weiqiong & Xing, Wanli & Wang, Anjian, 2021. "Research on global natural graphite trade risk countermeasures based on the maximum entropy principle," Resources Policy, Elsevier, vol. 74(C).
    12. V, Krishna Raj & V, Baiju, 2023. "Enhancing thermal performance of latent heat storage unit for solar cooling: A hybrid approach with C-shaped fins and nano-additives," Applied Energy, Elsevier, vol. 351(C).
    13. Li, TingXian & Lee, Ju-Hyuk & Wang, RuZhu & Kang, Yong Tae, 2013. "Enhancement of heat transfer for thermal energy storage application using stearic acid nanocomposite with multi-walled carbon nanotubes," Energy, Elsevier, vol. 55(C), pages 752-761.
    14. Li, Wei & Zhang, Rong & Jiang, Nan & Tang, Xiao-fen & Shi, Hai-feng & Zhang, Xing-xiang & Zhang, Yuankai & Dong, Lin & Zhang, Ningxin, 2013. "Composite macrocapsule of phase change materials/expanded graphite for thermal energy storage," Energy, Elsevier, vol. 57(C), pages 607-614.
    15. Zhang, H.L. & Baeyens, J. & Degrève, J. & Cáceres, G. & Segal, R. & Pitié, F., 2014. "Latent heat storage with tubular-encapsulated phase change materials (PCMs)," Energy, Elsevier, vol. 76(C), pages 66-72.
    16. Hussain, Abid & Tso, C.Y. & Chao, Christopher Y.H., 2016. "Experimental investigation of a passive thermal management system for high-powered lithium ion batteries using nickel foam-paraffin composite," Energy, Elsevier, vol. 115(P1), pages 209-218.
    17. Mishra, Amit Kumar & Lahiri, B.B. & Philip, John, 2020. "Carbon black nano particle loaded lauric acid-based form-stable phase change material with enhanced thermal conductivity and photo-thermal conversion for thermal energy storage," Energy, Elsevier, vol. 191(C).
    18. Ohayon-Lavi, Avia & Lavi, Adi & Alatawna, Amr & Ruse, Efrat & Ziskind, Gennady & Regev, Oren, 2021. "Graphite-based shape-stabilized composites for phase change material applications," Renewable Energy, Elsevier, vol. 167(C), pages 580-590.
    19. Yang, Lei & Zhao, Jiafei & Liu, Weiguo & Yang, Mingjun & Song, Yongchen, 2015. "Experimental study on the effective thermal conductivity of hydrate-bearing sediments," Energy, Elsevier, vol. 79(C), pages 203-211.
    20. Dhamodharan, Palanisamy & Bakthavatsalam, A.K. & Nijin, V.P. & Prabakaran, Rajendran & Kim, Sung Chul, 2024. "Enhancing cold storage efficiency: Sustainable apple pre-cooling utilizing polyethylene glycol and waste coconut oil as phase change materials for chilled energy recovery from air-conditioning condens," Energy, Elsevier, vol. 297(C).
    21. Tahan Latibari, Sara & Mehrali, Mohammad & Mehrali, Mehdi & Indra Mahlia, Teuku Meurah & Cornelis Metselaar, Hendrik Simon, 2013. "Synthesis, characterization and thermal properties of nanoencapsulated phase change materials via sol–gel method," Energy, Elsevier, vol. 61(C), pages 664-672.
    22. Yu, Jinghua & Leng, Kangxin & Ye, Hong & Xu, Xinhua & Luo, Yongqiang & Wang, Jinbo & Yang, Xie & Yang, Qingchen & Gang, Wenjie, 2020. "Study on thermal insulation characteristics and optimized design of pipe-embedded ventilation roof with outer-layer shape-stabilized PCM in different climate zones," Renewable Energy, Elsevier, vol. 147(P1), pages 1609-1622.
    23. Li, Min & Mu, Boyuan, 2019. "Effect of different dimensional carbon materials on the properties and application of phase change materials: A review," Applied Energy, Elsevier, vol. 242(C), pages 695-715.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiu, Xiaolin & Li, Wei & Song, Guolin & Chu, Xiaodong & Tang, Guoyi, 2012. "Microencapsulated n-octadecane with different methylmethacrylate-based copolymer shells as phase change materials for thermal energy storage," Energy, Elsevier, vol. 46(1), pages 188-199.
    2. Han, Pengju & Lu, Lixin & Qiu, Xiaolin & Tang, Yali & Wang, Jun, 2015. "Preparation and characterization of macrocapsules containing microencapsulated PCMs (phase change materials) for thermal energy storage," Energy, Elsevier, vol. 91(C), pages 531-539.
    3. Parameshwaran, R. & Kalaiselvam, S. & Harikrishnan, S. & Elayaperumal, A., 2012. "Sustainable thermal energy storage technologies for buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2394-2433.
    4. He, Fang & Wang, Xiaodong & Wu, Dezhen, 2014. "New approach for sol–gel synthesis of microencapsulated n-octadecane phase change material with silica wall using sodium silicate precursor," Energy, Elsevier, vol. 67(C), pages 223-233.
    5. Jamekhorshid, A. & Sadrameli, S.M. & Farid, M., 2014. "A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 531-542.
    6. Ohayon-Lavi, Avia & Lavi, Adi & Alatawna, Amr & Ruse, Efrat & Ziskind, Gennady & Regev, Oren, 2021. "Graphite-based shape-stabilized composites for phase change material applications," Renewable Energy, Elsevier, vol. 167(C), pages 580-590.
    7. Li, Wei & Zhang, Xing-xiang & Wang, Xue-chen & Tang, Guo-yi & Shi, Hai-feng, 2012. "Fabrication and morphological characterization of microencapsulated phase change materials (MicroPCMs) and macrocapsules containing MicroPCMs for thermal energy storage," Energy, Elsevier, vol. 38(1), pages 249-254.
    8. Su, Weiguang & Darkwa, Jo & Kokogiannakis, Georgios, 2015. "Review of solid–liquid phase change materials and their encapsulation technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 373-391.
    9. Zhang, Ying & Wang, Xiaodong & Wu, Dezhen, 2016. "Microencapsulation of n-dodecane into zirconia shell doped with rare earth: Design and synthesis of bifunctional microcapsules for photoluminescence enhancement and thermal energy storage," Energy, Elsevier, vol. 97(C), pages 113-126.
    10. Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
    11. Salunkhe, Pramod B. & Shembekar, Prashant S., 2012. "A review on effect of phase change material encapsulation on the thermal performance of a system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5603-5616.
    12. Zhang, P. & Xiao, X. & Ma, Z.W., 2016. "A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement," Applied Energy, Elsevier, vol. 165(C), pages 472-510.
    13. Jankowski, Nicholas R. & McCluskey, F. Patrick, 2014. "A review of phase change materials for vehicle component thermal buffering," Applied Energy, Elsevier, vol. 113(C), pages 1525-1561.
    14. Yataganbaba, Alptug & Ozkahraman, Bengi & Kurtbas, Irfan, 2017. "Worldwide trends on encapsulation of phase change materials: A bibliometric analysis (1990–2015)," Applied Energy, Elsevier, vol. 185(P1), pages 720-731.
    15. Ye, Hong & Wang, Zijun & Wang, Liwei, 2017. "Effects of PCM on power consumption and temperature control performance of a thermal control system subject to periodic ambient conditions," Applied Energy, Elsevier, vol. 190(C), pages 213-221.
    16. Li, C. & Wang, R.Z., 2012. "Building integrated energy storage opportunities in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6191-6211.
    17. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    18. Chai, Luxiao & Wang, Xiaodong & Wu, Dezhen, 2015. "Development of bifunctional microencapsulated phase change materials with crystalline titanium dioxide shell for latent-heat storage and photocatalytic effectiveness," Applied Energy, Elsevier, vol. 138(C), pages 661-674.
    19. Johra, Hicham & Heiselberg, Per, 2017. "Influence of internal thermal mass on the indoor thermal dynamics and integration of phase change materials in furniture for building energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 19-32.
    20. Zhao, C.Y. & Zhang, G.H., 2011. "Review on microencapsulated phase change materials (MEPCMs): Fabrication, characterization and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3813-3832.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:39:y:2012:i:1:p:294-302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.