IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v135y2014icp225-233.html
   My bibliography  Save this article

Development of thermal energy storage composites and prevention of PCM leakage

Author

Listed:
  • Li, Huiqiang
  • Chen, Huisu
  • Li, Xiangyu
  • Sanjayan, Jay G.

Abstract

Thermal energy storage composites were developed by incorporating granular phase change materials (PX25 from Rubitherm®) into cement paste. Without prevention, however, a significant amount of phase change material (paraffin) leaked from the PX25 during the fabrication process. To prevent paraffin leakage during fabrication, three types of nano-SiO2 powder (hydrophilic fumed silica (fs1), hydrophobic fumed silica (fs2), and precipitated silica (ps2)) were chosen to modify PX25. The influence of dosage of these modifiers was investigated with reference to PCM leakage during fabrication. Paraffin leakage was eliminated when hydrophobic fs2 or ps2 was used in a 2.3% and 9.0% mass fraction (relative to PX25), respectively. However, hydrophilic fs1 did not prevent leakage of paraffin. Microstructural and mechanical analyses of the thermal energy storage composites were used to analyze the prevention mechanism of hydrophobic nano-powder against paraffin leakage.

Suggested Citation

  • Li, Huiqiang & Chen, Huisu & Li, Xiangyu & Sanjayan, Jay G., 2014. "Development of thermal energy storage composites and prevention of PCM leakage," Applied Energy, Elsevier, vol. 135(C), pages 225-233.
  • Handle: RePEc:eee:appene:v:135:y:2014:i:c:p:225-233
    DOI: 10.1016/j.apenergy.2014.08.091
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914009143
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.08.091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, Rui & Pomianowski, Michal & Wang, Xin & Heiselberg, Per & Zhang, Yinping, 2013. "A new method to determine thermophysical properties of PCM-concrete brick," Applied Energy, Elsevier, vol. 112(C), pages 988-998.
    2. Wang, Lijiu & Meng, Duo, 2010. "Fatty acid eutectic/polymethyl methacrylate composite as form-stable phase change material for thermal energy storage," Applied Energy, Elsevier, vol. 87(8), pages 2660-2665, August.
    3. Diarce, Gonzalo & Urresti, Aitor & García-Romero, Ana & Delgado, Alejandra & Erkoreka, Aitor & Escudero, Cesar & Campos-Celador, Álvaro, 2013. "Ventilated active façades with PCM," Applied Energy, Elsevier, vol. 109(C), pages 530-537.
    4. Mahmoud, Saad & Tang, Aaron & Toh, Chin & AL-Dadah, Raya & Soo, Sein Leung, 2013. "Experimental investigation of inserts configurations and PCM type on the thermal performance of PCM based heat sinks," Applied Energy, Elsevier, vol. 112(C), pages 1349-1356.
    5. Zhang, Zhengguo & Shi, Guoquan & Wang, Shuping & Fang, Xiaoming & Liu, Xiaohong, 2013. "Thermal energy storage cement mortar containing n-octadecane/expanded graphite composite phase change material," Renewable Energy, Elsevier, vol. 50(C), pages 670-675.
    6. Xu, Biwan & Li, Zongjin, 2013. "Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage," Applied Energy, Elsevier, vol. 105(C), pages 229-237.
    7. Haillot, Didier & Franquet, Erwin & Gibout, Stéphane & Bédécarrats, Jean-Pierre, 2013. "Optimization of solar DHW system including PCM media," Applied Energy, Elsevier, vol. 109(C), pages 470-475.
    8. Álvarez, Servando & Cabeza, Luisa F. & Ruiz-Pardo, Alvaro & Castell, Albert & Tenorio, José Antonio, 2013. "Building integration of PCM for natural cooling of buildings," Applied Energy, Elsevier, vol. 109(C), pages 514-522.
    9. Li, Wei & Zhang, Rong & Jiang, Nan & Tang, Xiao-fen & Shi, Hai-feng & Zhang, Xing-xiang & Zhang, Yuankai & Dong, Lin & Zhang, Ningxin, 2013. "Composite macrocapsule of phase change materials/expanded graphite for thermal energy storage," Energy, Elsevier, vol. 57(C), pages 607-614.
    10. Barreneche, Camila & Navarro, M. Elena & Fernández, A. Inés & Cabeza, Luisa F., 2013. "Improvement of the thermal inertia of building materials incorporating PCM. Evaluation in the macroscale," Applied Energy, Elsevier, vol. 109(C), pages 428-432.
    11. Sharma, Atul & Tyagi, V.V. & Chen, C.R. & Buddhi, D., 2009. "Review on thermal energy storage with phase change materials and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 318-345, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Li, Min & Guo, Qiangang, 2015. "The preparation of the hydrotalcite-based composite phase change material," Applied Energy, Elsevier, vol. 156(C), pages 207-212.
    3. Ramakrishnan, Sayanthan & Sanjayan, Jay & Wang, Xiaoming & Alam, Morshed & Wilson, John, 2015. "A novel paraffin/expanded perlite composite phase change material for prevention of PCM leakage in cementitious composites," Applied Energy, Elsevier, vol. 157(C), pages 85-94.
    4. Li, Xiangyu & Chen, Huisu & Li, Huiqiang & Liu, Lin & Lu, Zeyu & Zhang, Tao & Duan, Wen Hui, 2015. "Integration of form-stable paraffin/nanosilica phase change material composites into vacuum insulation panels for thermal energy storage," Applied Energy, Elsevier, vol. 159(C), pages 601-609.
    5. Kong, Xiangfei & Jie, Pengfei & Yao, Chengqiang & Liu, Yun, 2017. "Experimental study on thermal performance of phase change material passive and active combined using for building application in winter," Applied Energy, Elsevier, vol. 206(C), pages 293-302.
    6. Ramakrishnan, Sayanthan & Wang, Xiaoming & Sanjayan, Jay & Wilson, John, 2017. "Thermal performance assessment of phase change material integrated cementitious composites in buildings: Experimental and numerical approach," Applied Energy, Elsevier, vol. 207(C), pages 654-664.
    7. Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung & Eddhahak, Anissa, 2019. "A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 467-484.
    8. Zhang, P. & Xiao, X. & Ma, Z.W., 2016. "A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement," Applied Energy, Elsevier, vol. 165(C), pages 472-510.
    9. Barzin, Reza & Chen, John J.J. & Young, Brent R. & Farid, Mohammed M., 2015. "Application of PCM underfloor heating in combination with PCM wallboards for space heating using price based control system," Applied Energy, Elsevier, vol. 148(C), pages 39-48.
    10. Mao, Qianjun, 2016. "Recent developments in geometrical configurations of thermal energy storage for concentrating solar power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 320-327.
    11. Wang, Chih Lin & Yeh, Kuan Lin & Chen, Chih Wei & Lee, Yun & Lee, Hung Lin & Lee, Tu, 2017. "A quick-fix design of phase change material by particle blending and spherical agglomeration," Applied Energy, Elsevier, vol. 191(C), pages 239-250.
    12. Qian, Tingting & Li, Jinhong, 2018. "Octadecane/C-decorated diatomite composite phase change material with enhanced thermal conductivity as aggregate for developing structural–functional integrated cement for thermal energy storage," Energy, Elsevier, vol. 142(C), pages 234-249.
    13. Wu, Songze & Zhou, Yang & Gao, Wen & Zhang, Zhexuan & Liu, Ao & Cai, Ranran & Wu, Chong & Peng, Xingfa & Li, Shibo & Li, Cuiwei & Yu, Wenbo & Huang, Zhenying, 2024. "Preparation and properties of shape-stable phase change material with enhanced thermal conductivity based on SiC porous ceramic carrier made of iron tailings," Applied Energy, Elsevier, vol. 355(C).
    14. Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung, 2020. "Thermal performance of a solar energy storage concrete panel incorporating phase change material aggregates developed for thermal regulation in buildings," Renewable Energy, Elsevier, vol. 160(C), pages 817-829.
    15. Sharma, S. & Micheli, L. & Chang, W. & Tahir, A.A. & Reddy, K.S. & Mallick, T.K., 2017. "Nano-enhanced Phase Change Material for thermal management of BICPV," Applied Energy, Elsevier, vol. 208(C), pages 719-733.
    16. Qu, Yue & Chen, Jiayu & Liu, Lifang & Xu, Tao & Wu, Huijun & Zhou, Xiaoqing, 2020. "Study on properties of phase change foam concrete block mixed with paraffin / fumed silica composite phase change material," Renewable Energy, Elsevier, vol. 150(C), pages 1127-1135.
    17. Rouba Joumblat & Zaher Al Basiouni Al Masri & Ghazi Al Khateeb & Adel Elkordi & Abdel Rahman El Tallis & Joseph Absi, 2023. "State-of-the-Art Review on Permanent Deformation Characterization of Asphalt Concrete Pavements," Sustainability, MDPI, vol. 15(2), pages 1-34, January.
    18. Nie, Binjian & Palacios, Anabel & Zou, Boyang & Liu, Jiaxu & Zhang, Tongtong & Li, Yunren, 2020. "Review on phase change materials for cold thermal energy storage applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soares, N. & Santos, P. & Gervásio, H. & Costa, J.J. & Simões da Silva, L., 2017. "Energy efficiency and thermal performance of lightweight steel-framed (LSF) construction: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 194-209.
    2. Chandel, S.S. & Agarwal, Tanya, 2017. "Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 581-596.
    3. Xu, Biwan & Li, Zongjin, 2014. "Performance of novel thermal energy storage engineered cementitious composites incorporating a paraffin/diatomite composite phase change material," Applied Energy, Elsevier, vol. 121(C), pages 114-122.
    4. Zhang, P. & Xiao, X. & Ma, Z.W., 2016. "A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement," Applied Energy, Elsevier, vol. 165(C), pages 472-510.
    5. Cao, Lei & Su, Di & Tang, Yaojie & Fang, Guiyin & Tang, Fang, 2015. "Properties evaluation and applications of thermal energystorage materials in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 500-522.
    6. Memon, Shazim Ali, 2014. "Phase change materials integrated in building walls: A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 870-906.
    7. Khadiran, Tumirah & Hussein, Mohd Zobir & Zainal, Zulkarnain & Rusli, Rafeadah, 2016. "Advanced energy storage materials for building applications and their thermal performance characterization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 916-928.
    8. Mingli Li & Guoqing Gui & Zhibin Lin & Long Jiang & Hong Pan & Xingyu Wang, 2018. "Numerical Thermal Characterization and Performance Metrics of Building Envelopes Containing Phase Change Materials for Energy-Efficient Buildings," Sustainability, MDPI, vol. 10(8), pages 1-23, July.
    9. Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung & Eddhahak, Anissa, 2019. "A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 467-484.
    10. Darzi, Mohammad Ebrahimnejad & Golestaneh, Seyyed Iman & Kamali, Marziyeh & Karimi, Gholamreza, 2019. "Thermal and electrical performance analysis of co-electrospun-electrosprayed PCM nanofiber composites in the presence of graphene and carbon fiber powder," Renewable Energy, Elsevier, vol. 135(C), pages 719-728.
    11. D'Alessandro, Antonella & Pisello, Anna Laura & Fabiani, Claudia & Ubertini, Filippo & Cabeza, Luisa F. & Cotana, Franco, 2018. "Multifunctional smart concretes with novel phase change materials: Mechanical and thermo-energy investigation," Applied Energy, Elsevier, vol. 212(C), pages 1448-1461.
    12. Memon, Shazim Ali & Cui, H.Z. & Zhang, Hang & Xing, Feng, 2015. "Utilization of macro encapsulated phase change materials for the development of thermal energy storage and structural lightweight aggregate concrete," Applied Energy, Elsevier, vol. 139(C), pages 43-55.
    13. Amaral, C. & Vicente, R. & Marques, P.A.A.P. & Barros-Timmons, A., 2017. "Phase change materials and carbon nanostructures for thermal energy storage: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1212-1228.
    14. Hekimoğlu, Gökhan & Nas, Memduh & Ouikhalfan, Mohammed & Sarı, Ahmet & Tyagi, V.V. & Sharma, R.K. & Kurbetci, Şirin & Saleh, Tawfik A., 2021. "Silica fume/capric acid-stearic acid PCM included-cementitious composite for thermal controlling of buildings: Thermal energy storage and mechanical properties," Energy, Elsevier, vol. 219(C).
    15. Wei, Haiting & Xie, Xiuzhen & Li, Xiangqi & Lin, Xingshui, 2016. "Preparation and characterization of capric-myristic-stearic acid eutectic mixture/modified expanded vermiculite composite as a form-stable phase change material," Applied Energy, Elsevier, vol. 178(C), pages 616-623.
    16. Li, Min & Mu, Boyuan, 2019. "Effect of different dimensional carbon materials on the properties and application of phase change materials: A review," Applied Energy, Elsevier, vol. 242(C), pages 695-715.
    17. Xu, Biwan & Li, Zongjin, 2014. "Paraffin/diatomite/multi-wall carbon nanotubes composite phase change material tailor-made for thermal energy storage cement-based composites," Energy, Elsevier, vol. 72(C), pages 371-380.
    18. Tang, Yaojie & Su, Di & Huang, Xiang & Alva, Guruprasad & Liu, Lingkun & Fang, Guiyin, 2016. "Synthesis and thermal properties of the MA/HDPE composites with nano-additives as form-stable PCM with improved thermal conductivity," Applied Energy, Elsevier, vol. 180(C), pages 116-129.
    19. Silva, Tiago & Vicente, Romeu & Rodrigues, Fernanda, 2016. "Literature review on the use of phase change materials in glazing and shading solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 515-535.
    20. Zhou, D. & Shire, G.S.F. & Tian, Y., 2014. "Parametric analysis of influencing factors in Phase Change Material Wallboard (PCMW)," Applied Energy, Elsevier, vol. 119(C), pages 33-42.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:135:y:2014:i:c:p:225-233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.