IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i2p251-d89969.html
   My bibliography  Save this article

Equilibrium Strategy Based Recycling Facility Site Selection towards Mitigating Coal Gangue Contamination

Author

Listed:
  • Jiuping Xu

    (Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610064, China
    Uncertainty Decision-Making Laboratory, Sichuan University, Chengdu 610064, China
    Current address: Uncertainty Decision-Making Laboratory, Sichuan University, Chengdu 610064, China.
    These authors contributed equally to this work.)

  • Lurong Fan

    (Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610064, China
    Uncertainty Decision-Making Laboratory, Sichuan University, Chengdu 610064, China
    These authors contributed equally to this work.)

  • Chengwei Lv

    (Uncertainty Decision-Making Laboratory, Sichuan University, Chengdu 610064, China
    These authors contributed equally to this work.)

Abstract

Environmental pollution caused by coal gangue has been a significant challenge for sustainable development; thus, many coal gangue reduction approaches have been proposed in recent years. In particular, coal gangue facility (CGF) construction has been considered as an efficient method for the control and recycling of coal gangue. Meanwhile, the identification and selection of suitable CGF sites is a fundamental task for the government. Therefore, based on the equilibrium strategy, a site selection approach under a fuzzy environment is developed to mitigate coal gangue contamination, which integrates a geographical information system (GIS) technique and a bi-level model to identify candidate CGF sites and to select the most suitable one. In this situation, the GIS technique used to identify potential feasible sites is able to integrate a great deal of geographical data tofitwithpracticalcircumstances;thebi-levelmodelusedtoscreentheappropriatesitecanreasonably dealwiththeconflictsbetweenthelocalauthorityandthecolliery. Moreover,aKarush–Kuhn–Tucker (KKT) condition-based approach is used to find an optimal solution, and a case study is given to demonstrate the effectiveness of the proposed method. The results across different scenarios show that appropriate site selection can achieve coal gangue reduction targets and that a suitable excess stack level can realize an environmental-economic equilibrium. Finally, some propositions and management recommendations are given.

Suggested Citation

  • Jiuping Xu & Lurong Fan & Chengwei Lv, 2017. "Equilibrium Strategy Based Recycling Facility Site Selection towards Mitigating Coal Gangue Contamination," Sustainability, MDPI, vol. 9(2), pages 1-27, February.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:2:p:251-:d:89969
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/2/251/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/2/251/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Omar Ben-Ayed & Charles E. Blair, 1990. "Computational Difficulties of Bilevel Linear Programming," Operations Research, INFORMS, vol. 38(3), pages 556-560, June.
    2. Jinfu Li & Changsheng Yue & Mei Zhang & Xidong Wang & Zuotai Zhang, 2015. "Facile and Economical Preparation of SiAlON-Based Composites Using Coal Gangue: From Fundamental to Industrial Application," Energies, MDPI, vol. 8(7), pages 1-13, July.
    3. Latinopoulos, D. & Kechagia, K., 2015. "A GIS-based multi-criteria evaluation for wind farm site selection. A regional scale application in Greece," Renewable Energy, Elsevier, vol. 78(C), pages 550-560.
    4. He, Zhou & Fan, Bo & Cheng, T.C.E. & Wang, Shou-Yang & Tan, Chin-Hon, 2016. "A mean-shift algorithm for large-scale planar maximal covering location problems," European Journal of Operational Research, Elsevier, vol. 250(1), pages 65-76.
    5. Wu, Yunna & Geng, Shuai & Zhang, Haobo & Gao, Min, 2014. "Decision framework of solar thermal power plant site selection based on linguistic Choquet operator," Applied Energy, Elsevier, vol. 136(C), pages 303-311.
    6. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.
    7. Timo Blumberg & Max Sorgenfrei & George Tsatsaronis, 2015. "Design and Assessment of an IGCC Concept with CO 2 Capture for the Co-Generation of Electricity and Substitute Natural Gas," Sustainability, MDPI, vol. 7(12), pages 1-13, December.
    8. Avittathur, Balram & Shah, Janat & Gupta, Omprakash K., 2005. "Distribution centre location modelling for differential sales tax structure," European Journal of Operational Research, Elsevier, vol. 162(1), pages 191-205, April.
    9. You, C.F. & Xu, X.C., 2010. "Coal combustion and its pollution control in China," Energy, Elsevier, vol. 35(11), pages 4467-4472.
    10. Paul, Jomon Aliyas & MacDonald, Leo, 2016. "Location and capacity allocations decisions to mitigate the impacts of unexpected disasters," European Journal of Operational Research, Elsevier, vol. 251(1), pages 252-263.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenbing Guo & Mingjie Guo & Yi Tan & Erhu Bai & Gaobo Zhao, 2019. "Sustainable Development of Resources and the Environment: Mining-Induced Eco-Geological Environmental Damage and Mitigation Measures—A Case Study in the Henan Coal Mining Area, China," Sustainability, MDPI, vol. 11(16), pages 1-34, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunna Wu & Meng Yang & Haobo Zhang & Kaifeng Chen & Yang Wang, 2016. "Optimal Site Selection of Electric Vehicle Charging Stations Based on a Cloud Model and the PROMETHEE Method," Energies, MDPI, vol. 9(3), pages 1-20, March.
    2. Yunna Wu & Chao Xie & Chuanbo Xu & Fang Li, 2017. "A Decision Framework for Electric Vehicle Charging Station Site Selection for Residential Communities under an Intuitionistic Fuzzy Environment: A Case of Beijing," Energies, MDPI, vol. 10(9), pages 1-25, August.
    3. Marco Rogna, 2019. "A First-Phase Screening Device for Site Selection of Large-Scale Solar Plants with an Application to Italy," BEMPS - Bozen Economics & Management Paper Series BEMPS57, Faculty of Economics and Management at the Free University of Bozen.
    4. Yasir Ahmed Solangi & Qingmei Tan & Muhammad Waris Ali Khan & Nayyar Hussain Mirjat & Ifzal Ahmed, 2018. "The Selection of Wind Power Project Location in the Southeastern Corridor of Pakistan: A Factor Analysis, AHP, and Fuzzy-TOPSIS Application," Energies, MDPI, vol. 11(8), pages 1-26, July.
    5. Xu, Jiuping & Song, Xiaoling & Wu, Yimin & Zeng, Ziqiang, 2015. "GIS-modelling based coal-fired power plant site identification and selection," Applied Energy, Elsevier, vol. 159(C), pages 520-539.
    6. Qing Feng & Qian Huang & Qingyan Zheng & Li Lu, 2018. "New Carbon Emissions Allowance Allocation Method Based on Equilibrium Strategy for Carbon Emission Mitigation in the Coal-Fired Power Industry," Sustainability, MDPI, vol. 10(8), pages 1-18, August.
    7. Ceren Erdin & Halil Emre Akbaş, 2019. "A Comparative Analysis of Fuzzy TOPSIS and Geographic Information Systems (GIS) for the Location Selection of Shopping Malls: A Case Study from Turkey," Sustainability, MDPI, vol. 11(14), pages 1-22, July.
    8. Rogna, Marco, 2020. "A first-phase screening method for site selection of large-scale solar plants with an application to Italy," Land Use Policy, Elsevier, vol. 99(C).
    9. Jalil Heidary Dahooie & Ali Husseinzadeh Kashan & Zahra Shoaei Naeini & Amir Salar Vanaki & Edmundas Kazimieras Zavadskas & Zenonas Turskis, 2022. "A Hybrid Multi-Criteria-Decision-Making Aggregation Method and Geographic Information System for Selecting Optimal Solar Power Plants in Iran," Energies, MDPI, vol. 15(8), pages 1-20, April.
    10. Zhao, Chengwei & Xu, Xuanhua & Liu, Ruihuan & He, Jishan, 2021. "A multi-aspect coordination HDRED site selection framework under multi-type heterogeneous environments," Renewable Energy, Elsevier, vol. 171(C), pages 833-848.
    11. Song, Xiaoling & Xu, Jiuping & Zhang, Zhe & Shen, Charles & Xie, Heping & Peña-Mora, Feniosky & Wu, Yimin, 2017. "Reconciling strategy towards construction site selection-layout for coal-fired power plants," Applied Energy, Elsevier, vol. 204(C), pages 846-865.
    12. Gökçe Candan & Merve Cengiz Toklu, 2021. "Determining Solar Power Plant Location Using Hesitant Fuzzy AHP Method," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 9(1), pages 25-34, June.
    13. Anissa Frini & Sarah Benamor, 2018. "Making Decisions in a Sustainable Development Context: A State-of-the-Art Survey and Proposal of a Multi-period Single Synthesizing Criterion Approach," Computational Economics, Springer;Society for Computational Economics, vol. 52(2), pages 341-385, August.
    14. Shao, Meng & Han, Zhixin & Sun, Jinwei & Xiao, Chengsi & Zhang, Shulei & Zhao, Yuanxu, 2020. "A review of multi-criteria decision making applications for renewable energy site selection," Renewable Energy, Elsevier, vol. 157(C), pages 377-403.
    15. Wenjun Chen & Yanlei Zhu & Meng Yang & Jiahai Yuan, 2017. "Optimal Site Selection of Wind-Solar Complementary Power Generation Project for a Large-Scale Plug-In Charging Station," Sustainability, MDPI, vol. 9(11), pages 1-22, October.
    16. Rediske, Graciele & Siluk, Julio Cezar M. & Michels, Leandro & Rigo, Paula D. & Rosa, Carmen B. & Cugler, Gilberto, 2020. "Multi-criteria decision-making model for assessment of large photovoltaic farms in Brazil," Energy, Elsevier, vol. 197(C).
    17. Chiranjib Bhowmik & Sumit Bhowmik & Amitava Ray, 2021. "Selection of optimum green energy sources by considering environmental constructs and their technical criteria: a case study," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13890-13918, September.
    18. Yunna Wu & Jianli Zhou & Yong Hu & Lingwenying Li & Xiaokun Sun, 2018. "A TODIM-Based Investment Decision Framework for Commercial Distributed PV Projects under the Energy Performance Contracting (EPC) Business Model: A Case in East-Central China," Energies, MDPI, vol. 11(5), pages 1-27, May.
    19. Keroglou, I. & Tsoutsos, T., 2024. "Optimal siting of solar desalination plants in Crete, Greece employing a GIS/MCDM approach," Renewable Energy, Elsevier, vol. 224(C).
    20. Kyriakopoulos, Grigorios L. & Arabatzis, Garyfallos & Tsialis, Panagiotis & Ioannou, Konstantinos, 2018. "Electricity consumption and RES plants in Greece: Typologies of regional units," Renewable Energy, Elsevier, vol. 127(C), pages 134-144.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:2:p:251-:d:89969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.