IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v131y2017icp67-77.html
   My bibliography  Save this article

Going nuclear for climate mitigation: An analysis of the cost effectiveness of preserving existing U.S. nuclear power plants as a carbon avoidance strategy

Author

Listed:
  • Roth, Michael Buchdahl
  • Jaramillo, Paulina

Abstract

Nuclear power plants generate over 60% of the carbon-free electricity in the U.S. Due to a decrease in electricity prices as a result of the availability of cheaper natural gas and increased low-cost renewables, many of these plants are at risk of premature retirement. If nuclear power plants retire, CO2 emissions in many U.S. states could increase, even while the states comply with EPA legislation aimed at mitigating emissions of greenhouse gases that contribute to climate change. In this paper, we perform a Monte Carlo-based analysis to determine the breakeven price of electricity these plants must secure in order to avoid financial loses between 2015 and 2040, and find median breakeven electricity prices to range between $35 and $73 per MWh. Based on our estimates of future electricity prices under a low natural gas price scenario from the Energy Information Administration, our analysis suggests that U.S. nuclear plants would require between $8 and $44 per MWh (median results) on top of electric sales revenue in order to breakeven. Assuming natural gas plants would replace retired nuclear power plants, we estimate an equivalent cost of avoided CO2 emissions to be $18-$30 per metric ton of avoided CO2 (median results) for multi-reactor nuclear plants, and $47-$97 per metric ton of avoided CO2 (median results) for single-reactor plants. Preserving the existing nuclear power plant fleet, especially multi-reactor plants, is thus a cost effective carbon-avoidance strategy compared to the social cost of carbon.

Suggested Citation

  • Roth, Michael Buchdahl & Jaramillo, Paulina, 2017. "Going nuclear for climate mitigation: An analysis of the cost effectiveness of preserving existing U.S. nuclear power plants as a carbon avoidance strategy," Energy, Elsevier, vol. 131(C), pages 67-77.
  • Handle: RePEc:eee:energy:v:131:y:2017:i:c:p:67-77
    DOI: 10.1016/j.energy.2017.05.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217307491
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.05.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lucas Davis & Catherine Hausman, 2016. "Market Impacts of a Nuclear Power Plant Closure," American Economic Journal: Applied Economics, American Economic Association, vol. 8(2), pages 92-122, April.
    2. Fabien A. Roques & William J. Nuttall & David M. Newbery & Richard de Neufville & Stephen Connors, 2006. "Nuclear Power: A Hedge against Uncertain Gas and Carbon Prices?," The Energy Journal, , vol. 27(4), pages 1-24, October.
    3. Owen, Anthony D., 2006. "Renewable energy: Externality costs as market barriers," Energy Policy, Elsevier, vol. 34(5), pages 632-642, March.
    4. Rahmani, Mohsen & Jaramillo, Paulina & Hug, Gabriela, 2016. "Implications of environmental regulation and coal plant retirements in systems with large scale penetration of wind power," Energy Policy, Elsevier, vol. 95(C), pages 196-210.
    5. Vujić, Jasmina & Antić, Dragoljub P. & Vukmirović, Zorka, 2012. "Environmental impact and cost analysis of coal versus nuclear power: The U.S. case," Energy, Elsevier, vol. 45(1), pages 31-42.
    6. Lucas W. Davis, 2012. "Prospects for Nuclear Power," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 49-66, Winter.
    7. Woo, C.K. & Horowitz, I. & Moore, J. & Pacheco, A., 2011. "The impact of wind generation on the electricity spot-market price level and variance: The Texas experience," Energy Policy, Elsevier, vol. 39(7), pages 3939-3944, July.
    8. Alonso, Gustavo & Bilbao, Sama & Valle, Edmundo del, 2016. "Economic competitiveness of small modular reactors versus coal and combined cycle plants," Energy, Elsevier, vol. 116(P1), pages 867-879.
    9. Nicholas Z. Muller & Robert Mendelsohn, 2009. "Efficient Pollution Regulation: Getting the Prices Right," American Economic Review, American Economic Association, vol. 99(5), pages 1714-1739, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bernstein, David H. & Parmeter, Christopher F. & Tsionas, Mike G., 2023. "On the performance of the United States nuclear power sector: A Bayesian approach," Energy Economics, Elsevier, vol. 125(C).
    2. Diana Silva Siqueira & Josué Meystre & Maicon Queiroz Hilário & Danilo Henrique Donato Rocha & Genésio José Menon & Rogério José Silva, 2019. "Current perspectives on nuclear energy as a global climate change mitigation option," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(5), pages 749-777, June.
    3. Sandro Sacchelli & Valerii Havrysh & Antonina Kalinichenko & Dariusz Suszanowicz, 2022. "Ground-Mounted Photovoltaic and Crop Cultivation: A Comparative Analysis," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    4. Mulako D. Mukelabai & K. G. U. Wijayantha & Richard E. Blanchard, 2022. "Hydrogen for Cooking: A Review of Cooking Technologies, Renewable Hydrogen Systems and Techno-Economics," Sustainability, MDPI, vol. 14(24), pages 1-30, December.
    5. Muellner, Nikolaus & Arnold, Nikolaus & Gufler, Klaus & Kromp, Wolfgang & Renneberg, Wolfgang & Liebert, Wolfgang, 2021. "Nuclear energy - The solution to climate change?," Energy Policy, Elsevier, vol. 155(C).
    6. Ahmed Abd El-Hameed & Juyoul Kim, 2021. "Machine Learning-Based Classification and Regression Approach for Sustainable Disaster Management: The Case Study of APR1400 in Korea," Sustainability, MDPI, vol. 13(17), pages 1-14, August.
    7. Schmeda-Lopez, Diego & McConnaughy, Thomas B. & McFarland, Eric W., 2018. "Radiation enhanced chemical production: Improving the value proposition of nuclear power," Energy, Elsevier, vol. 162(C), pages 491-504.
    8. Abid Hossain Khan & Md Shafiqul Islam, 2019. "A Pctran-Based Investigation On The Effect Of Inadvertent Control Rod Withdrawal On The ThermalHydraulic Parameters Of A Vver-1200 Nuclear Power Reactor," Acta Mechanica Malaysia (AMM), Zibeline International Publishing, vol. 2(2), pages 32-38, October.
    9. Eser, P. & Chokani, N. & Abhari, R., 2018. "Trade-offs between integration and isolation in Switzerland's energy policy," Energy, Elsevier, vol. 150(C), pages 19-27.
    10. Huang, Anzhong & Guo, Meiwen & Dai, Luote & Mirza, Aboubakar & Ali, Sajid, 2024. "Budgeting for a greener future: Asymmetric nexus between nuclear energy technology budgets and CO2 emissions," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
    11. SarahM. Jordaan & Afreen Siddiqi & William Kakenmaster & AliceC. Hill, 2019. "The Climate Vulnerabilities of Global Nuclear Power," Global Environmental Politics, MIT Press, vol. 19(4), pages 3-13, November.
    12. David Popp & Jacquelyn Pless & Ivan Haščič & Nick Johnstone, 2020. "Innovation and Entrepreneurship in the Energy Sector," NBER Chapters, in: The Role of Innovation and Entrepreneurship in Economic Growth, pages 175-248, National Bureau of Economic Research, Inc.
    13. Bistline, John E.T. & Brown, Maxwell & Siddiqui, Sauleh A. & Vaillancourt, Kathleen, 2020. "Electric sector impacts of renewable policy coordination: A multi-model study of the North American energy system," Energy Policy, Elsevier, vol. 145(C).
    14. Wakiyama, Takako & Kuriyama, Akihisa, 2018. "Assessment of renewable energy expansion potential and its implications on reforming Japan's electricity system," Energy Policy, Elsevier, vol. 115(C), pages 302-316.
    15. Bistline, John E.T. & Blanford, Geoffrey J., 2020. "Value of technology in the U.S. electric power sector: Impacts of full portfolios and technological change on the costs of meeting decarbonization goals," Energy Economics, Elsevier, vol. 86(C).
    16. Yuan, Mengyao & Tong, Fan & Duan, Lei & Dowling, Jacqueline A. & Davis, Steven J. & Lewis, Nathan S. & Caldeira, Ken, 2020. "Would firm generators facilitate or deter variable renewable energy in a carbon-free electricity system?," Applied Energy, Elsevier, vol. 279(C).
    17. Weng, Tingwei & Zhang, Guangxu & Wang, Haixin & Qi, Mingliang & Qvist, Staffan & Zhang, Yaoli, 2024. "The impact of coal to nuclear on regional energy system," Energy, Elsevier, vol. 302(C).
    18. Bessette, Douglas L. & Arvai, Joseph L., 2018. "Engaging attribute tradeoffs in clean energy portfolio development," Energy Policy, Elsevier, vol. 115(C), pages 221-229.
    19. Craig, Michael T. & Jaramillo, Paulina & Hodge, Bri-Mathias & Williams, Nathaniel J. & Severnini, Edson, 2018. "A retrospective analysis of the market price response to distributed photovoltaic generation in California," Energy Policy, Elsevier, vol. 121(C), pages 394-403.
    20. Murphy, Sinnott & Lavin, Luke & Apt, Jay, 2020. "Resource adequacy implications of temperature-dependent electric generator availability," Applied Energy, Elsevier, vol. 262(C).
    21. Marisol Garrouste & Michael T. Craig & Daniel Wendt & Maria Herrera Diaz & William Jenson & Qian Zhang & Brendan Kochunas, 2023. "Techno-Economic Analysis of Synthetic Fuel Production from Existing Nuclear Power Plants across the United States," Papers 2309.12085, arXiv.org.
    22. Bah, Muhammad Maladoh, 2023. "State and federal nuclear support schemes in dynamic electricity market conditions: Insights from NYISO and PJM," Energy Policy, Elsevier, vol. 182(C).
    23. Seda Canbulat & Kutlu Balci & Onder Canbulat & I. Safak Bayram, 2021. "Techno-Economic Analysis of On-Site Energy Storage Units to Mitigate Wind Energy Curtailment: A Case Study in Scotland," Energies, MDPI, vol. 14(6), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linares, Pedro & Conchado, Adela, 2013. "The economics of new nuclear power plants in liberalized electricity markets," Energy Economics, Elsevier, vol. 40(S1), pages 119-125.
    2. Rinne, Sonja, 2018. "Radioinactive: Are nuclear power plant outages in France contagious to the German electricity price?," CIW Discussion Papers 3/2018, University of Münster, Center for Interdisciplinary Economics (CIW).
    3. Juárez-Luna, David, 2020. "Beneficios económicos y ambientales de la energía nuclear [Economic and environmental benefits of nuclear energy]," MPRA Paper 98790, University Library of Munich, Germany.
    4. Bernstein, David H. & Parmeter, Christopher F. & Tsionas, Mike G., 2023. "On the performance of the United States nuclear power sector: A Bayesian approach," Energy Economics, Elsevier, vol. 125(C).
    5. Geissmann, Thomas, 2017. "A probabilistic approach to the computation of the levelized cost of electricity," Energy, Elsevier, vol. 124(C), pages 372-381.
    6. Elaheh Shobeiri & Filippo Genco & Daniel Hoornweg & Akira Tokuhiro, 2023. "Small Modular Reactor Deployment and Obstacles to Be Overcome," Energies, MDPI, vol. 16(8), pages 1-19, April.
    7. Ali Mirchi & Saeed Hadian & Kaveh Madani & Omid M. Rouhani & Azadeh M. Rouhani, 2012. "World Energy Balance Outlook and OPEC Production Capacity: Implications for Global Oil Security," Energies, MDPI, vol. 5(8), pages 1-26, July.
    8. Adler, David B. & Jha, Akshaya & Severnini, Edson, 2020. "Considering the nuclear option: Hidden benefits and social costs of nuclear power in the U.S. since 1970," Resource and Energy Economics, Elsevier, vol. 59(C).
    9. Haxhimusa, Adhurim, 2018. "The Effects of German Wind and Solar Electricity on French Spot Price Volatility: An Empirical Investigation," Department of Economics Working Paper Series 258, WU Vienna University of Economics and Business.
    10. Đurišić, Željko & Mikulović, Jovan & Babić, Iva, 2012. "Impact of wind speed variations on wind farm economy in the open market conditions," Renewable Energy, Elsevier, vol. 46(C), pages 289-296.
    11. Heesun Jang, 2020. "Market Impacts of a Transmission Investment: Evidence from the ERCOT Competitive Renewable Energy Zones Project," Energies, MDPI, vol. 13(12), pages 1-16, June.
    12. Zhu, Hongjia & Deng, Yongheng & Zhu, Rong & He, Xiaobo, 2016. "Fear of nuclear power? Evidence from Fukushima nuclear accident and land markets in China," Regional Science and Urban Economics, Elsevier, vol. 60(C), pages 139-154.
    13. Fell, Harrison & Kaffine, Daniel T. & Novan, Kevin, 2019. "Emissions, Transmission, and the Environmental Value of Renewable Energy," CEnREP Working Papers 283718, North Carolina State University, Department of Agricultural and Resource Economics.
    14. Chu, Yin & Gao, Juanxia & Li, Haoyang, 2023. "Wind power expansion and regional allocative efficiency among fossil-fuel electricity generators," International Journal of Industrial Organization, Elsevier, vol. 91(C).
    15. Aman Gupta & Piyush Sabharwall & Paul D. Armatis & Brian M. Fronk & Vivek Utgikar, 2022. "Coupling Chemical Heat Pump with Nuclear Reactor for Temperature Amplification by Delivering Process Heat and Electricity: A Techno-Economic Analysis," Energies, MDPI, vol. 15(16), pages 1-25, August.
    16. Frans P. Vries & Nick Hanley, 2016. "Incentive-Based Policy Design for Pollution Control and Biodiversity Conservation: A Review," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 63(4), pages 687-702, April.
    17. John Foster & Liam Wagner & Phil Wild & Junhua Zhao & Lucas Skoofa & Craig Froome, 2011. "Market and Economic Modelling of the Intelligent Grid: End of Year Report 2009," Energy Economics and Management Group Working Papers 09, School of Economics, University of Queensland, Australia.
    18. Todd D. Gerarden & Richard G. Newell & Robert N. Stavins, 2017. "Assessing the Energy-Efficiency Gap," Journal of Economic Literature, American Economic Association, vol. 55(4), pages 1486-1525, December.
    19. LaPlue, Lawrence D., 2022. "Environmental consequences of natural gas wellhead pricing deregulation," Journal of Environmental Economics and Management, Elsevier, vol. 116(C).
    20. Olukunle O. Owolabi & Kathryn Lawson & Sanhita Sengupta & Yingsi Huang & Lan Wang & Chaopeng Shen & Mila Getmansky Sherman & Deborah A. Sunter, 2022. "A Robust Statistical Analysis of the Role of Hydropower on the System Electricity Price and Price Volatility," Papers 2203.02089, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:131:y:2017:i:c:p:67-77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.