IDEAS home Printed from https://ideas.repec.org/p/bsl/wpaper/2023-05.html
   My bibliography  Save this paper

State and federal nuclear support schemes in dynamic electricity market conditions: Insights from NYISO and PJM

Author

Listed:
  • Bah, Muhammad Maladoh

    (University of Basel)

Abstract

Since 2017, several U.S. states have put in place out-of-market financial support schemes for nuclear power plants operating in deregulated electricity markets. In late 2021, the federal government announced the introduction of two new support schemes to secure the continued operation of nuclear power plants. This policy paper evaluates the profitability of state subsidized nuclear plants in the NYISO and PJM markets over a five-year period between 2017 and 2021. Results indicate that apart from 2019, nuclear power plants were financially robust, relying solely on market revenues without the need for state support schemes. More importantly, the recent upswing in competitive electricity market prices suggests that additional federal-level support schemes are not economically justified in the current market conditions. I provide several suggestions to reconfigure the support schemes to reflect dynamic market conditions and ensure only vulnerable plants are granted out-of-market support.

Suggested Citation

  • Bah, Muhammad Maladoh, 2023. "State and federal nuclear support schemes in dynamic electricity market conditions: Insights from NYISO and PJM," Working papers 2023/05, Faculty of Business and Economics - University of Basel.
  • Handle: RePEc:bsl:wpaper:2023/05
    as

    Download full text from publisher

    File URL: https://edoc.unibas.ch/93914/1/20230307175634_64076cc25d93e.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mills, Andrew & Wiser, Ryan & Millstein, Dev & Carvallo, Juan Pablo & Gorman, Will & Seel, Joachim & Jeong, Seongeun, 2021. "The impact of wind, solar, and other factors on the decline in wholesale power prices in the United States," Applied Energy, Elsevier, vol. 283(C).
    2. Olsina, Fernando & Roscher, Mark & Larisson, Carlos & Garces, Francisco, 2007. "Short-term optimal wind power generation capacity in liberalized electricity markets," Energy Policy, Elsevier, vol. 35(2), pages 1257-1273, February.
    3. Haratyk, Geoffrey, 2017. "Early nuclear retirements in deregulated U.S. markets: Causes, implications and policy options," Energy Policy, Elsevier, vol. 110(C), pages 150-166.
    4. Gelabert, Liliana & Labandeira, Xavier & Linares, Pedro, 2011. "An ex-post analysis of the effect of renewables and cogeneration on Spanish electricity prices," Energy Economics, Elsevier, vol. 33(S1), pages 59-65.
    5. Roth, Michael Buchdahl & Jaramillo, Paulina, 2017. "Going nuclear for climate mitigation: An analysis of the cost effectiveness of preserving existing U.S. nuclear power plants as a carbon avoidance strategy," Energy, Elsevier, vol. 131(C), pages 67-77.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olukunle O. Owolabi & Toryn L. J. Schafer & Georgia E. Smits & Sanhita Sengupta & Sean E. Ryan & Lan Wang & David S. Matteson & Mila Getmansky Sherman & Deborah A. Sunter, 2021. "Role of Variable Renewable Energy Penetration on Electricity Price and its Volatility Across Independent System Operators in the United States," Papers 2112.11338, arXiv.org, revised Nov 2022.
    2. SarahM. Jordaan & Afreen Siddiqi & William Kakenmaster & AliceC. Hill, 2019. "The Climate Vulnerabilities of Global Nuclear Power," Global Environmental Politics, MIT Press, vol. 19(4), pages 3-13, November.
    3. Craig, Michael T. & Jaramillo, Paulina & Hodge, Bri-Mathias & Williams, Nathaniel J. & Severnini, Edson, 2018. "A retrospective analysis of the market price response to distributed photovoltaic generation in California," Energy Policy, Elsevier, vol. 121(C), pages 394-403.
    4. Yuan, Mengyao & Tong, Fan & Duan, Lei & Dowling, Jacqueline A. & Davis, Steven J. & Lewis, Nathan S. & Caldeira, Ken, 2020. "Would firm generators facilitate or deter variable renewable energy in a carbon-free electricity system?," Applied Energy, Elsevier, vol. 279(C).
    5. Oosthuizen, Anna Maria & Inglesi-Lotz, Roula & Thopil, George Alex, 2022. "The relationship between renewable energy and retail electricity prices: Panel evidence from OECD countries," Energy, Elsevier, vol. 238(PB).
    6. Csereklyei, Zsuzsanna & Qu, Songze & Ancev, Tihomir, 2019. "The effect of wind and solar power generation on wholesale electricity prices in Australia," Energy Policy, Elsevier, vol. 131(C), pages 358-369.
    7. Thao Pham & Killian Lemoine, 2020. "Impacts of subsidized renewable electricity generation on spot market prices in Germany : Evidence from a GARCH model with panel data," Working Papers hal-02568268, HAL.
    8. Elberg, Christina & Hagspiel, Simeon, 2015. "Spatial dependencies of wind power and interrelations with spot price dynamics," European Journal of Operational Research, Elsevier, vol. 241(1), pages 260-272.
    9. David Popp & Jacquelyn Pless & Ivan Haščič & Nick Johnstone, 2020. "Innovation and Entrepreneurship in the Energy Sector," NBER Chapters, in: The Role of Innovation and Entrepreneurship in Economic Growth, pages 175-248, National Bureau of Economic Research, Inc.
    10. Würzburg, Klaas & Labandeira, Xavier & Linares, Pedro, 2013. "Renewable generation and electricity prices: Taking stock and new evidence for Germany and Austria," Energy Economics, Elsevier, vol. 40(S1), pages 159-171.
    11. Möst, Dominik & Keles, Dogan, 2010. "A survey of stochastic modelling approaches for liberalised electricity markets," European Journal of Operational Research, Elsevier, vol. 207(2), pages 543-556, December.
    12. Ciarreta, Aitor & Espinosa, Maria Paz & Pizarro-Irizar, Cristina, 2017. "Has renewable energy induced competitive behavior in the Spanish electricity market?," Energy Policy, Elsevier, vol. 104(C), pages 171-182.
    13. Hirth, Lion & Ueckerdt, Falko, 2013. "Redistribution effects of energy and climate policy: The electricity market," Energy Policy, Elsevier, vol. 62(C), pages 934-947.
    14. Ciarreta, Aitor & Espinosa, Maria Paz & Pizarro-Irizar, Cristina, 2014. "Is green energy expensive? Empirical evidence from the Spanish electricity market," Energy Policy, Elsevier, vol. 69(C), pages 205-215.
    15. Rubin, Ofir D. & Babcock, Bruce A., 2013. "The impact of expansion of wind power capacity and pricing methods on the efficiency of deregulated electricity markets," Energy, Elsevier, vol. 59(C), pages 676-688.
    16. Denny, Eleanor & O'Mahoney, Amy & Lannoye, Eamonn, 2017. "Modelling the impact of wind generation on electricity market prices in Ireland: An econometric versus unit commitment approach," Renewable Energy, Elsevier, vol. 104(C), pages 109-119.
    17. Marisol Garrouste & Michael T. Craig & Daniel Wendt & Maria Herrera Diaz & William Jenson & Qian Zhang & Brendan Kochunas, 2023. "Techno-Economic Analysis of Synthetic Fuel Production from Existing Nuclear Power Plants across the United States," Papers 2309.12085, arXiv.org.
    18. Browne, Oliver & Poletti, Stephen & Young, David, 2015. "How does market power affect the impact of large scale wind investment in 'energy only' wholesale electricity markets?," Energy Policy, Elsevier, vol. 87(C), pages 17-27.
    19. Figueiredo, Nuno Carvalho & Silva, Patrícia Pereira da & Cerqueira, Pedro A., 2016. "It is windy in Denmark: Does market integration suffer?," Energy, Elsevier, vol. 115(P2), pages 1385-1399.
    20. Xu, M. & Zhuan, X., 2013. "Optimal planning for wind power capacity in an electric power system," Renewable Energy, Elsevier, vol. 53(C), pages 280-286.

    More about this item

    Keywords

    nuclear support schemes; electricity market; excess profit; NYISO; PJM;
    All these keywords.

    JEL classification:

    • H71 - Public Economics - - State and Local Government; Intergovernmental Relations - - - State and Local Taxation, Subsidies, and Revenue
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bsl:wpaper:2023/05. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: WWZ (email available below). General contact details of provider: https://edirc.repec.org/data/wwzbsch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.