IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v24y2019i5d10.1007_s11027-018-9829-5.html
   My bibliography  Save this article

Current perspectives on nuclear energy as a global climate change mitigation option

Author

Listed:
  • Diana Silva Siqueira

    (Federal University of Itajubá)

  • Josué Meystre

    (Federal University of Itajubá)

  • Maicon Queiroz Hilário

    (Federal University of Itajubá)

  • Danilo Henrique Donato Rocha

    (Federal University of Itajubá)

  • Genésio José Menon

    (Federal University of Itajubá)

  • Rogério José Silva

    (Federal University of Itajubá)

Abstract

The primary source of greenhouse gas (GHG) emissions are fossil fuels with about 66% share of global electricity generation. Despite the challenges it faces today, nuclear energy is considered an effective technology that can be used in mitigating climate change with specific characteristics that underpin the commitment of some countries to maintain it as a future option. Several studies show the effects of investment minimization policies and the replacement of nuclear power plants with renewables. This implies economic impacts on the price of electricity, which increases the use of fossil fuels resulting in health problems related to air pollution and increasing costs to reduce the carbon emitted in the world. This paper addresses a systematic review of the prospects for nuclear energy investments adopted by countries as a strategic option to mitigate climate change and quantifies a range of carbon dioxide (CO2) emission values that can be avoided using as reference the emission factor of power plants at coal.

Suggested Citation

  • Diana Silva Siqueira & Josué Meystre & Maicon Queiroz Hilário & Danilo Henrique Donato Rocha & Genésio José Menon & Rogério José Silva, 2019. "Current perspectives on nuclear energy as a global climate change mitigation option," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(5), pages 749-777, June.
  • Handle: RePEc:spr:masfgc:v:24:y:2019:i:5:d:10.1007_s11027-018-9829-5
    DOI: 10.1007/s11027-018-9829-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-018-9829-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-018-9829-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jeff Tollefson, 2014. "US seeks waste-research revival," Nature, Nature, vol. 507(7490), pages 15-16, March.
    2. Roth, Michael Buchdahl & Jaramillo, Paulina, 2017. "Going nuclear for climate mitigation: An analysis of the cost effectiveness of preserving existing U.S. nuclear power plants as a carbon avoidance strategy," Energy, Elsevier, vol. 131(C), pages 67-77.
    3. Sanglim Lee & Minkyung Kim & Jiwoong Lee, 2017. "Analyzing the Impact of Nuclear Power on CO 2 Emissions," Sustainability, MDPI, vol. 9(8), pages 1-13, August.
    4. Boccard, Nicolas, 2009. "Capacity factor of wind power realized values vs. estimates," Energy Policy, Elsevier, vol. 37(7), pages 2679-2688, July.
    5. Jeff Tollefson, 2011. "Battle of Yucca Mountain rages on," Nature, Nature, vol. 473(7347), pages 266-267, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rocha, Danilo H.D. & Siqueira, Diana S. & Silva, Rogério J., 2021. "Exergoenvironmental analysis for evaluating coal-fired power plants technologies," Energy, Elsevier, vol. 233(C).
    2. Lin-Ju Chen & Zhen-Hai Fang & Fei Xie & Hai-Kuo Dong & Yu-Heng Zhou, 2020. "Technology-side carbon abatement cost curves for China’s power generation sector," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(7), pages 1305-1323, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioannidis, Romanos & Koutsoyiannis, Demetris, 2020. "A review of land use, visibility and public perception of renewable energy in the context of landscape impact," Applied Energy, Elsevier, vol. 276(C).
    2. SarahM. Jordaan & Afreen Siddiqi & William Kakenmaster & AliceC. Hill, 2019. "The Climate Vulnerabilities of Global Nuclear Power," Global Environmental Politics, MIT Press, vol. 19(4), pages 3-13, November.
    3. David Popp & Jacquelyn Pless & Ivan Haščič & Nick Johnstone, 2020. "Innovation and Entrepreneurship in the Energy Sector," NBER Chapters, in: The Role of Innovation and Entrepreneurship in Economic Growth, pages 175-248, National Bureau of Economic Research, Inc.
    4. Marques, António Cardoso & Fuinhas, José Alberto & Menegaki, Angeliki N., 2014. "Interactions between electricity generation sources and economic activity in Greece: A VECM approach," Applied Energy, Elsevier, vol. 132(C), pages 34-46.
    5. Paul L. Joskow, 2011. "Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies," American Economic Review, American Economic Association, vol. 101(3), pages 238-241, May.
    6. Boccard, Nicolas, 2010. "Economic properties of wind power: A European assessment," Energy Policy, Elsevier, vol. 38(7), pages 3232-3244, July.
    7. Craig, Michael T. & Jaramillo, Paulina & Hodge, Bri-Mathias & Williams, Nathaniel J. & Severnini, Edson, 2018. "A retrospective analysis of the market price response to distributed photovoltaic generation in California," Energy Policy, Elsevier, vol. 121(C), pages 394-403.
    8. Linnell, Peter, 2010. "Are Smaller Turbines the Way Forward for Wind Energy in Herefordshire?," MPRA Paper 58879, University Library of Munich, Germany.
    9. de Medeiros, Armando Lúcio Ramos & Araújo, Alex Maurício & de Oliveira Filho, Oyama Douglas Queiroz & Rohatgi, Janardan & dos Santos, Maurílio José, 2015. "Analysis of design parameters of large-sized wind turbines by non-dimensional model," Energy, Elsevier, vol. 93(P1), pages 1146-1154.
    10. Considine, Timothy J. & Manderson, Edward J.M., 2015. "The cost of solar-centric renewable portfolio standards and reducing coal power generation using Arizona as a case study," Energy Economics, Elsevier, vol. 49(C), pages 402-419.
    11. Luis M. Abadie & Nestor Goicoechea, 2021. "Old Wind Farm Life Extension vs. Full Repowering: A Review of Economic Issues and a Stochastic Application for Spain," Energies, MDPI, vol. 14(12), pages 1-24, June.
    12. Eser, P. & Chokani, N. & Abhari, R., 2018. "Trade-offs between integration and isolation in Switzerland's energy policy," Energy, Elsevier, vol. 150(C), pages 19-27.
    13. Asif Raihan & Grzegorz Zimon & Mohammad Mahtab Alam & Md. Rehan Khan & Beata Sadowska, 2024. "Nexus between Nuclear Energy, Economic Growth, and Greenhouse Gas Emissions in India," International Journal of Energy Economics and Policy, Econjournals, vol. 14(2), pages 172-182, March.
    14. Timothy Considine & Edward Manderson, 2013. "Balancing Fiscal, Energy, and Environmental Concerns: Analyzing the Policy Options for California’s Energy and Economic Future," Energies, MDPI, vol. 6(3), pages 1-32, March.
    15. Eric Lucas dos Santos Cabral & Mario Orestes Aguirre Gonzalez & Priscila da Cunha Jacome Vidal & Joao Florencio da Costa Junior & Rafael Monteiro de Vasconcelos & David Cassimiro de Melo & Ruan Lucas , 2024. "Optimization Models for Operations and Maintenance of Offshore Wind Turbines Based on Artificial Intelligence and Operations Research: A Systematic Literature Review," International Journal of Business and Management, Canadian Center of Science and Education, vol. 19(3), pages 1-1, June.
    16. He, Gang & Kammen, Daniel M., 2014. "Where, when and how much wind is available? A provincial-scale wind resource assessment for China," Energy Policy, Elsevier, vol. 74(C), pages 116-122.
    17. Flora, Rui & Marques, António Cardoso & Fuinhas, José Alberto, 2014. "Wind power idle capacity in a panel of European countries," Energy, Elsevier, vol. 66(C), pages 823-830.
    18. Carlos de Castro & Iñigo Capellán-Pérez, 2020. "Standard, Point of Use, and Extended Energy Return on Energy Invested (EROI) from Comprehensive Material Requirements of Present Global Wind, Solar, and Hydro Power Technologies," Energies, MDPI, vol. 13(12), pages 1-43, June.
    19. Marc Baudry & Clément Bonnet, 2019. "Demand-Pull Instruments and the Development of Wind Power in Europe: A Counterfactual Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(2), pages 385-429, June.
    20. Mentis, Dimitrios & Siyal, Shahid Hussain & Korkovelos, Alexandros & Howells, Mark, 2016. "A geospatial assessment of the techno-economic wind power potential in India using geographical restrictions," Renewable Energy, Elsevier, vol. 97(C), pages 77-88.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:24:y:2019:i:5:d:10.1007_s11027-018-9829-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.