IDEAS home Printed from https://ideas.repec.org/a/aea/aejpol/v13y2021i2p241-72.html
   My bibliography  Save this article

Emissions, Transmission, and the Environmental Value of Renewable Energy

Author

Listed:
  • Harrison Fell
  • Daniel T. Kaffine
  • Kevin Novan

Abstract

We examine how transmission congestion alters the environmental benefits provided by renewable generation. Using hourly data from the Texas and midcontinent electricity markets, we find that relaxing transmission constraints between the wind-rich areas and the demand centers of the respective markets conservatively increases the nonmarket value of wind by 30 percent for Texas and 17 percent for midcontinent markets. Much of this increase in the nonmarket value arises from a redistribution in where air quality improvements occur—when transmission is not constrained, wind offsets much more pollution from fossil fuel units located near highly populated demand centers.

Suggested Citation

  • Harrison Fell & Daniel T. Kaffine & Kevin Novan, 2021. "Emissions, Transmission, and the Environmental Value of Renewable Energy," American Economic Journal: Economic Policy, American Economic Association, vol. 13(2), pages 241-272, May.
  • Handle: RePEc:aea:aejpol:v:13:y:2021:i:2:p:241-72
    DOI: 10.1257/pol.20190258
    as

    Download full text from publisher

    File URL: https://www.aeaweb.org/doi/10.1257/pol.20190258
    Download Restriction: no

    File URL: https://doi.org/10.3886/E119513V1
    Download Restriction: no

    File URL: https://www.aeaweb.org/doi/10.1257/pol.20190258.appx
    Download Restriction: no

    File URL: https://www.aeaweb.org/doi/10.1257/pol.20190258.ds
    Download Restriction: Access to full text is restricted to AEA members and institutional subscribers.

    File URL: https://libkey.io/10.1257/pol.20190258?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    2. Paul Joskow & Jean Tirole, 2005. "Merchant Transmission Investment," Journal of Industrial Economics, Wiley Blackwell, vol. 53(2), pages 233-264, June.
    3. Werner Antweiler & Brian R. Copeland & M. Scott Taylor, 2001. "Is Free Trade Good for the Environment?," American Economic Review, American Economic Association, vol. 91(4), pages 877-908, September.
    4. Holland, Stephen P. & Yates, Andrew J., 2015. "Optimal trading ratios for pollution permit markets," Journal of Public Economics, Elsevier, vol. 125(C), pages 16-27.
    5. Lucas W. Davis & Matthew E. Kahn, 2010. "International Trade in Used Vehicles: The Environmental Consequences of NAFTA," American Economic Journal: Economic Policy, American Economic Association, vol. 2(4), pages 58-82, November.
    6. Graff Zivin, Joshua S. & Kotchen, Matthew J. & Mansur, Erin T., 2014. "Spatial and temporal heterogeneity of marginal emissions: Implications for electric cars and other electricity-shifting policies," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 248-268.
    7. Joseph Cullen, 2013. "Measuring the Environmental Benefits of Wind-Generated Electricity," American Economic Journal: Economic Policy, American Economic Association, vol. 5(4), pages 107-133, November.
    8. Daniel T. Kaffine, Brannin J. McBee, and Jozef Lieskovsky, 2013. "Emissions Savings from Wind Power Generation in Texas," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    9. Harrison Fell & Daniel T. Kaffine, 2018. "The Fall of Coal: Joint Impacts of Fuel Prices and Renewables on Generation and Emissions," American Economic Journal: Economic Policy, American Economic Association, vol. 10(2), pages 90-116, May.
    10. Hitaj, Claudia, 2015. "Location matters: The impact of renewable power on transmission congestion and emissions," Energy Policy, Elsevier, vol. 86(C), pages 1-16.
    11. Brian R. Copeland & M. Scott Taylor, 1994. "North-South Trade and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 109(3), pages 755-787.
    12. Kevin Novan, 2015. "Valuing the Wind: Renewable Energy Policies and Air Pollution Avoided," American Economic Journal: Economic Policy, American Economic Association, vol. 7(3), pages 291-326, August.
    13. Martin Drechsler & Jonas Egerer & Martin Lange & Frank Masurowski & Jürgen Meyerhoff & Malte Oehlmann, 2017. "Efficient and equitable spatial allocation of renewable power plants at the country scale," Nature Energy, Nature, vol. 2(9), pages 1-9, September.
    14. Wolfram Schlenker & W. Reed Walker, 2016. "Airports, Air Pollution, and Contemporaneous Health," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 83(2), pages 768-809.
    15. Olivier Deschênes & Michael Greenstone & Joseph S. Shapiro, 2017. "Defensive Investments and the Demand for Air Quality: Evidence from the NOx Budget Program," American Economic Review, American Economic Association, vol. 107(10), pages 2958-2989, October.
    16. Duncan S. Callaway & Meredith Fowlie & Gavin McCormick, 2018. "Location, Location, Location: The Variable Value of Renewable Energy and Demand-Side Efficiency Resources," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 5(1), pages 39-75.
    17. Akshaya Jha & Nicholas Z. Muller, 2017. "Handle with Care: The Local Air Pollution Costs of Coal Storage," NBER Working Papers 23417, National Bureau of Economic Research, Inc.
    18. Janet Currie & Reed Walker, 2011. "Traffic Congestion and Infant Health: Evidence from E-ZPass," American Economic Journal: Applied Economics, American Economic Association, vol. 3(1), pages 65-90, January.
    19. Schill, Wolf-Peter & Egerer, Jonas & Rosellón, Juan, 2015. "Testing Regulatory Regimes for Power Transmission Expansion with Fluctuating Demand and Wind Generation," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 47(1), pages 1-28.
    20. Stephen P. Holland & Erin T. Mansur & Nicholas Z. Muller & Andrew J. Yates, 2016. "Are There Environmental Benefits from Driving Electric Vehicles? The Importance of Local Factors," American Economic Review, American Economic Association, vol. 106(12), pages 3700-3729, December.
    21. Cherniwchan, Jevan, 2017. "Trade liberalization and the environment: Evidence from NAFTA and U.S. manufacturing," Journal of International Economics, Elsevier, vol. 105(C), pages 130-149.
    22. Copeland, Brian R & Taylor, M Scott, 1995. "Trade and Transboundary Pollution," American Economic Review, American Economic Association, vol. 85(4), pages 716-737, September.
    23. Nicholas Z. Muller & Robert Mendelsohn, 2009. "Efficient Pollution Regulation: Getting the Prices Right," American Economic Review, American Economic Association, vol. 99(5), pages 1714-1739, December.
    24. Lucas Davis & Catherine Hausman, 2016. "Market Impacts of a Nuclear Power Plant Closure," American Economic Journal: Applied Economics, American Economic Association, vol. 8(2), pages 92-122, April.
    25. Drechsler, Martin & Ohl, Cornelia & Meyerhoff, Jürgen & Eichhorn, Marcus & Monsees, Jan, 2011. "Combining spatial modeling and choice experiments for the optimal spatial allocation of wind turbines," Energy Policy, Elsevier, vol. 39(6), pages 3845-3854, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Westphal, Igor, 2024. "The effects of reducing renewable power intermittency through portfolio diversification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    2. Carattini, Stefano & Figge, Béla & Gordan, Alexander & Löschel, Andreas, 2024. "Municipal building codes and the adoption of solar photovoltaics," Journal of Environmental Economics and Management, Elsevier, vol. 124(C).
    3. Harrison Fell & Melinda Sandler Morrill, 2024. "The Impact of Wind Energy on Air Pollution and Emergency Department Visits," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 87(1), pages 287-320, January.
    4. Katzen, Matthew & Leslie, Gordon W., 2024. "Siting and operating incentives in electrical networks: A study of mispricing in zonal markets," International Journal of Industrial Organization, Elsevier, vol. 94(C).
    5. Yang, Yuting, 2022. "Electricity interconnection with intermittent renewables," Journal of Environmental Economics and Management, Elsevier, vol. 113(C).
    6. Abrell, Jan & Kosch, Mirjam, 2022. "Cross-country spillovers of renewable energy promotion—The case of Germany," Resource and Energy Economics, Elsevier, vol. 68(C).
    7. Savelli, Iacopo & Hardy, Jeffrey & Hepburn, Cameron & Morstyn, Thomas, 2022. "Putting wind and solar in their place: Internalising congestion and other system-wide costs with enhanced contracts for difference in Great Britain," Energy Economics, Elsevier, vol. 113(C).
    8. Rivera, Nathaly M. & Ruiz-Tagle, J. Cristobal & Spiller, Elisheba, 2024. "The health benefits of solar power generation: Evidence from Chile," Journal of Environmental Economics and Management, Elsevier, vol. 126(C).
    9. Paige Weber & Matt Woerman, 2022. "Intermittency or Uncertainty? Impacts of Renewable Energy in Electricity Markets," CESifo Working Paper Series 9902, CESifo.
    10. Gugler, Klaus & Haxhimusa, Adhurim & Liebensteiner, Mario, 2023. "Carbon pricing and emissions: Causal effects of Britain's carbon tax," Energy Economics, Elsevier, vol. 121(C).
    11. Luis E. Gonzales & Koichiro Ito & Mar Reguant, 2022. "The Dynamic Impact of Market Integration: Evidence from Renewable Energy Expansion in Chile," NBER Working Papers 30016, National Bureau of Economic Research, Inc.
    12. Jamal Mamkhezri & Leonard A. Malczynski & Janie M. Chermak, 2021. "Assessing the Economic and Environmental Impacts of Alternative Renewable Portfolio Standards: Winners and Losers," Energies, MDPI, vol. 14(11), pages 1-23, June.
    13. Novan, Kevin & Wang, Yingzi, 2024. "Estimates of the marginal curtailment rates for solar and wind generation," Journal of Environmental Economics and Management, Elsevier, vol. 124(C).
    14. Xiaoying Xu & Xinxin Tian, 2023. "Dynamic Evolution and Trend Prediction in Coupling Coordination between Energy Consumption and Green Development in China," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    15. Bohland, Moritz & Schwenen, Sebastian, 2022. "Renewable support and strategic pricing in electricity markets," International Journal of Industrial Organization, Elsevier, vol. 80(C).
    16. Chu, Yin & Gao, Juanxia & Li, Haoyang, 2023. "Wind power expansion and regional allocative efficiency among fossil-fuel electricity generators," International Journal of Industrial Organization, Elsevier, vol. 91(C).
    17. Concettini, Silvia & Creti, Anna & Gualdi, Stanislao, 2022. "Assessing the regional redistributive effect of renewable power production through a spot market algorithm simulator: The case of Italy," Energy Economics, Elsevier, vol. 114(C).
    18. LaRiviere, Jacob & Lyu, Xueying, 2022. "Transmission constraints, intermittent renewables and welfare," Journal of Environmental Economics and Management, Elsevier, vol. 112(C).
    19. Harleman, Max, 2024. "Who bears the cost of renewable power transmission lines? Evidence from housing values," Energy Policy, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rivera, Nathaly M. & Ruiz-Tagle, J. Cristobal & Spiller, Elisheba, 2024. "The health benefits of solar power generation: Evidence from Chile," Journal of Environmental Economics and Management, Elsevier, vol. 126(C).
    2. Chu, Yin & Gao, Juanxia & Li, Haoyang, 2023. "Wind power expansion and regional allocative efficiency among fossil-fuel electricity generators," International Journal of Industrial Organization, Elsevier, vol. 91(C).
    3. LaRiviere, Jacob & Lyu, Xueying, 2022. "Transmission constraints, intermittent renewables and welfare," Journal of Environmental Economics and Management, Elsevier, vol. 112(C).
    4. Brehm, Paul, 2019. "Natural gas prices, electric generation investment, and greenhouse gas emissions," Resource and Energy Economics, Elsevier, vol. 58(C).
    5. Duque, Valentina & Gilraine, Michael, 2022. "Coal use, air pollution, and student performance," Journal of Public Economics, Elsevier, vol. 213(C).
    6. John J. García Rendón & Alex F. Pérez-Libreros, 2019. "El precio spot de la electricidad y la inclusión de energía renovable no convencional: evidencia para Colombia," Documentos de Trabajo de Valor Público 17393, Universidad EAFIT.
    7. Steven M. Smith, 2019. "The Relative Economic Merits of Alternative Water Rights," Working Papers 2019-08, Colorado School of Mines, Division of Economics and Business.
    8. Perez, Alex & Garcia-Rendon, John J., 2021. "Integration of non-conventional renewable energy and spot price of electricity: A counterfactual analysis for Colombia," Renewable Energy, Elsevier, vol. 167(C), pages 146-161.
    9. Brittany Tarufelli & Ben Gilbert, 2019. "Leakage in Regional Climate Policy? Implications of Electricity Market Design," Working Papers 2019-07, Colorado School of Mines, Division of Economics and Business, revised Dec 2021.
    10. Stefan Lamp & Mario Samano, 2023. "(Mis)allocation of Renewable Energy Sources," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 10(1), pages 195-229.
    11. Graff Zivin, Joshua S. & Kotchen, Matthew J. & Mansur, Erin T., 2014. "Spatial and temporal heterogeneity of marginal emissions: Implications for electric cars and other electricity-shifting policies," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 248-268.
    12. Harding, Matthew & Kettler, Kyle & Lamarche, Carlos & Ma, Lala, 2023. "The (alleged) environmental and social benefits of dynamic pricing," Journal of Economic Behavior & Organization, Elsevier, vol. 205(C), pages 574-593.
    13. Abrell, Jan & Kosch, Mirjam & Rausch, Sebastian, 2019. "Carbon abatement with renewables: Evaluating wind and solar subsidies in Germany and Spain," Journal of Public Economics, Elsevier, vol. 169(C), pages 172-202.
    14. Li, Haoyang & Lin, Wen, 2023. "Cheaper solar, cleaner grid?," Energy Economics, Elsevier, vol. 127(PB).
    15. Gugler, Klaus & Haxhimusa, Adhurim & Liebensteiner, Mario, 2023. "Carbon pricing and emissions: Causal effects of Britain's carbon tax," Energy Economics, Elsevier, vol. 121(C).
    16. Steven E. Sexton & A. Justin Kirkpatrick & Robert Harris & Nicholas Z. Muller, 2018. "Heterogeneous Environmental and Grid Benefits from Rooftop Solar and the Costs of Inefficient Siting Decisions," NBER Working Papers 25241, National Bureau of Economic Research, Inc.
    17. Grant Jacobsen, 2016. "Improving Energy Codes," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    18. Austin, Wes & Carattini, Stefano & Gomez-Mahecha, John & Pesko, Michael F., 2023. "The effects of contemporaneous air pollution on COVID-19 morbidity and mortality," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).
    19. Gutiérrez, Emilio & Teshima, Kensuke, 2018. "Abatement expenditures, technology choice, and environmental performance: Evidence from firm responses to import competition in Mexico," Journal of Development Economics, Elsevier, vol. 133(C), pages 264-274.
    20. Oliveira, Tiago & Varum, Celeste & Botelho, Anabela, 2019. "Econometric modeling of CO2 emissions abatement: Comparing alternative approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 310-322.

    More about this item

    JEL classification:

    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q51 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Valuation of Environmental Effects
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aea:aejpol:v:13:y:2021:i:2:p:241-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael P. Albert (email available below). General contact details of provider: https://edirc.repec.org/data/aeaaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.