Coupling Chemical Heat Pump with Nuclear Reactor for Temperature Amplification by Delivering Process Heat and Electricity: A Techno-Economic Analysis
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Bayon, Alicia & Bader, Roman & Jafarian, Mehdi & Fedunik-Hofman, Larissa & Sun, Yanping & Hinkley, Jim & Miller, Sarah & Lipiński, Wojciech, 2018. "Techno-economic assessment of solid–gas thermochemical energy storage systems for solar thermal power applications," Energy, Elsevier, vol. 149(C), pages 473-484.
- Schmidt, Matthias & Gutierrez, Andrea & Linder, Marc, 2017. "Thermochemical energy storage with CaO/Ca(OH)2 – Experimental investigation of the thermal capability at low vapor pressures in a lab scale reactor," Applied Energy, Elsevier, vol. 188(C), pages 672-681.
- Stewart, W.R. & Shirvan, K., 2022. "Capital cost estimation for advanced nuclear power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
- Alonso, Gustavo & Bilbao, Sama & Valle, Edmundo del, 2016. "Economic competitiveness of small modular reactors versus coal and combined cycle plants," Energy, Elsevier, vol. 116(P1), pages 867-879.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Selvan Bellan & Tatsuya Kodama & Nobuyuki Gokon & Koji Matsubara, 2022. "A review on high‐temperature thermochemical heat storage: Particle reactors and materials based on solid–gas reactions," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(5), September.
- Laurie André & Stéphane Abanades, 2020. "Recent Advances in Thermochemical Energy Storage via Solid–Gas Reversible Reactions at High Temperature," Energies, MDPI, vol. 13(22), pages 1-23, November.
- Peng, Xinyue & Yao, Min & Root, Thatcher W. & Maravelias, Christos T., 2020. "Design and analysis of concentrating solar power plants with fixed-bed reactors for thermochemical energy storage," Applied Energy, Elsevier, vol. 262(C).
- Timothy Praditia & Thilo Walser & Sergey Oladyshkin & Wolfgang Nowak, 2020. "Improving Thermochemical Energy Storage Dynamics Forecast with Physics-Inspired Neural Network Architecture," Energies, MDPI, vol. 13(15), pages 1-26, July.
- Van Hee, Nick & Peremans, Herbert & Nimmegeers, Philippe, 2024. "Economic potential and barriers of small modular reactors in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
- Risthaus, Kai & Linder, Marc & Schmidt, Matthias, 2022. "Experimental investigation of a novel mechanically fluidized bed reactor for thermochemical energy storage with calcium hydroxide/calcium oxide," Applied Energy, Elsevier, vol. 315(C).
- Lai, Chun Sing & Locatelli, Giorgio, 2021. "Economic and financial appraisal of novel large-scale energy storage technologies," Energy, Elsevier, vol. 214(C).
- Thellufsen, Jakob Zinck & Lund, Henrik & Mathiesen, Brian Vad & Østergaard, Poul Alberg & Sorknæs, Peter & Nielsen, Steffen & Madsen, Poul Thøis & Andresen, Gorm Bruun, 2024. "Cost and system effects of nuclear power in carbon-neutral energy systems," Applied Energy, Elsevier, vol. 371(C).
- Sunku Prasad, J. & Muthukumar, P. & Desai, Fenil & Basu, Dipankar N. & Rahman, Muhammad M., 2019. "A critical review of high-temperature reversible thermochemical energy storage systems," Applied Energy, Elsevier, vol. 254(C).
- Gravogl, Georg & Knoll, Christian & Artner, Werner & Welch, Jan M. & Eitenberger, Elisabeth & Friedbacher, Gernot & Harasek, Michael & Hradil, Klaudia & Werner, Andreas & Weinberger, Peter & Müller, D, 2019. "Pressure effects on the carbonation of MeO (Me = Co, Mn, Pb, Zn) for thermochemical energy storage," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
- Asuega, Anthony & Limb, Braden J. & Quinn, Jason C., 2023. "Techno-economic analysis of advanced small modular nuclear reactors," Applied Energy, Elsevier, vol. 334(C).
- Black, Geoffrey A. & Aydogan, Fatih & Koerner, Cassandra L., 2019. "Economic viability of light water small modular nuclear reactors: General methodology and vendor data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 248-258.
- Fadi Alnaimat & Yasir Rashid, 2019. "Thermal Energy Storage in Solar Power Plants: A Review of the Materials, Associated Limitations, and Proposed Solutions," Energies, MDPI, vol. 12(21), pages 1-19, October.
- Juárez-Luna, David, 2020. "Beneficios económicos y ambientales de la energía nuclear [Economic and environmental benefits of nuclear energy]," MPRA Paper 98790, University Library of Munich, Germany.
- Haneklaus, Nils & Schröders, Sarah & Zheng, Yanhua & Allelein, Hans-Josef, 2017. "Economic evaluation of flameless phosphate rock calcination with concentrated solar power and high temperature reactors," Energy, Elsevier, vol. 140(P1), pages 1148-1157.
- Gabriel Zsembinszki & Aran Solé & Camila Barreneche & Cristina Prieto & A. Inés Fernández & Luisa F. Cabeza, 2018. "Review of Reactors with Potential Use in Thermochemical Energy Storage in Concentrated Solar Power Plants," Energies, MDPI, vol. 11(9), pages 1-23, September.
- Schmidt, Matthias & Linder, Marc, 2017. "Power generation based on the Ca(OH)2/ CaO thermochemical storage system – Experimental investigation of discharge operation modes in lab scale and corresponding conceptual process design," Applied Energy, Elsevier, vol. 203(C), pages 594-607.
- Risthaus, Kai & Bürger, Inga & Linder, Marc & Schmidt, Matthias, 2020. "Numerical analysis of the hydration of calcium oxide in a fixed bed reactor based on lab-scale experiments," Applied Energy, Elsevier, vol. 261(C).
- Wang, Mengyi & Chen, Li & He, Pu & Tao, Wen-Quan, 2019. "Numerical study and enhancement of Ca(OH)2/CaO dehydration process with porous channels embedded in reactors," Energy, Elsevier, vol. 181(C), pages 417-428.
- Carro, A. & Chacartegui, R. & Ortiz, C. & Becerra, J.A., 2022. "Analysis of a thermochemical energy storage system based on the reversible Ca(OH)2/CaO reaction," Energy, Elsevier, vol. 261(PA).
More about this item
Keywords
chemical heat pump; techno-economic; nuclear energy; temperature boost; industrial thermal processes;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5873-:d:887290. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.