IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v123y2017icp710-727.html
   My bibliography  Save this article

Modelling of organic Rankine cycle power systems in off-design conditions: An experimentally-validated comparative study

Author

Listed:
  • Dickes, Rémi
  • Dumont, Olivier
  • Daccord, Rémi
  • Quoilin, Sylvain
  • Lemort, Vincent

Abstract

Because of environmental issues and the depletion of fossil fuels, the world energy sector is undergoing many changes toward increased sustainability. Among the many fields of research and development, power generation from low-grade heat sources is gaining interest and the organic Rankine cycle (ORC) is seen as one of the most promising technologies for such applications. In this paper, it is proposed to perform an experimentally-validated comparison of different modelling methods for the off-design simulation of ORC-based power systems. To this end, three types of modelling paradigms (namely a constant-efficiency method, a polynomial-based method and a semi-empirical method) are compared both in terms of their fitting and extrapolation capabilities. Post-processed measurements gathered on two experimental ORC facilities are used as reference for the models calibration and evaluation. The study is first applied at a component level (i.e. each component is analysed individually) and then extended to the characterization of the entire organic Rankine cycle power systems. Benefits and limitations of each modelling method are discussed. The results show that semi-empirical models are the most reliable for simulating the off-design working conditions of ORC systems, while constant-efficiency and polynomial-based models are both demonstrating lack of accuracy and/or robustness.

Suggested Citation

  • Dickes, Rémi & Dumont, Olivier & Daccord, Rémi & Quoilin, Sylvain & Lemort, Vincent, 2017. "Modelling of organic Rankine cycle power systems in off-design conditions: An experimentally-validated comparative study," Energy, Elsevier, vol. 123(C), pages 710-727.
  • Handle: RePEc:eee:energy:v:123:y:2017:i:c:p:710-727
    DOI: 10.1016/j.energy.2017.01.130
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217301378
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.01.130?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mazzi, N. & Rech, S. & Lazzaretto, A., 2015. "Off-design dynamic model of a real Organic Rankine Cycle system fuelled by exhaust gases from industrial processes," Energy, Elsevier, vol. 90(P1), pages 537-551.
    2. E. Georges & S. Declaye & O. Dumont & S. Quoilin & V. Lemort, 2013. "Design of a small-scale organic Rankine cycle engine used in a solar power plant," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 8(suppl_1), pages 34-41, April.
    3. Manente, Giovanni & Toffolo, Andrea & Lazzaretto, Andrea & Paci, Marco, 2013. "An Organic Rankine Cycle off-design model for the search of the optimal control strategy," Energy, Elsevier, vol. 58(C), pages 97-106.
    4. Declaye, Sébastien & Quoilin, Sylvain & Guillaume, Ludovic & Lemort, Vincent, 2013. "Experimental study on an open-drive scroll expander integrated into an ORC (Organic Rankine Cycle) system with R245fa as working fluid," Energy, Elsevier, vol. 55(C), pages 173-183.
    5. Quoilin, Sylvain & Aumann, Richard & Grill, Andreas & Schuster, Andreas & Lemort, Vincent & Spliethoff, Hartmut, 2011. "Dynamic modeling and optimal control strategy of waste heat recovery Organic Rankine Cycles," Applied Energy, Elsevier, vol. 88(6), pages 2183-2190, June.
    6. Davide Ziviani & Brandon J. Woodland & Emeline Georges & Eckhard A. Groll & James E. Braun & W. Travis Horton & Martijn Van den Broek & Michel De Paepe, 2016. "Development and a Validation of a Charge Sensitive Organic Rankine Cycle (ORC) Simulation Tool," Energies, MDPI, vol. 9(6), pages 1-36, May.
    7. Hu, Dongshuai & Zheng, Ya & Wu, Yi & Li, Saili & Dai, Yiping, 2015. "Off-design performance comparison of an organic Rankine cycle under different control strategies," Applied Energy, Elsevier, vol. 156(C), pages 268-279.
    8. Ben-Ran Fu & Sung-Wei Hsu & Yuh-Ren Lee & Jui-Ching Hsieh & Chia-Ming Chang & Chih-Hsi Liu, 2014. "Performance of a 250 kW Organic Rankine Cycle System for Off-Design Heat Source Conditions," Energies, MDPI, vol. 7(6), pages 1-11, June.
    9. Sylvain Quoilin & Jessica Schrouff, 2016. "Assessing Steady-State, Multivariate Experimental Data Using Gaussian Processes: The GPExp Open-Source Library," Energies, MDPI, vol. 9(6), pages 1-16, May.
    10. Bamgbopa, Musbaudeen O. & Uzgoren, Eray, 2013. "Numerical analysis of an organic Rankine cycle under steady and variable heat input," Applied Energy, Elsevier, vol. 107(C), pages 219-228.
    11. Xie, Hui & Yang, Can, 2013. "Dynamic behavior of Rankine cycle system for waste heat recovery of heavy duty diesel engines under driving cycle," Applied Energy, Elsevier, vol. 112(C), pages 130-141.
    12. Tchanche, Bertrand F. & Lambrinos, Gr. & Frangoudakis, A. & Papadakis, G., 2011. "Low-grade heat conversion into power using organic Rankine cycles – A review of various applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3963-3979.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dumont, Olivier & Parthoens, Antoine & Dickes, Rémi & Lemort, Vincent, 2018. "Experimental investigation and optimal performance assessment of four volumetric expanders (scroll, screw, piston and roots) tested in a small-scale organic Rankine cycle system," Energy, Elsevier, vol. 165(PA), pages 1119-1127.
    2. Oh, Jinwoo & Park, Yunjae & Lee, Hoseong, 2022. "Development of a fully deterministic simulation model for organic Rankine cycle operating under off-design conditions," Applied Energy, Elsevier, vol. 307(C).
    3. Yıldız Koç, 2019. "Parametric Optimisation of an ORC in a Wood Chipboard Production Facility to Recover Waste Heat Produced from the Drying and Steam Production Process," Energies, MDPI, vol. 12(19), pages 1-22, September.
    4. Eddouibi, Jaouad & Abderafi, Souad & Vaudreuil, Sébastien & Bounahmidi, Tijani, 2022. "Dynamic simulation of solar-powered ORC using open-source tools: A case study combining SAM and coolprop via Python," Energy, Elsevier, vol. 239(PA).
    5. Dickes, Rémi & Dumont, Olivier & Guillaume, Ludovic & Quoilin, Sylvain & Lemort, Vincent, 2018. "Charge-sensitive modelling of organic Rankine cycle power systems for off-design performance simulation," Applied Energy, Elsevier, vol. 212(C), pages 1262-1281.
    6. Kutlu, Cagri & Erdinc, Mehmet Tahir & Li, Jing & Su, Yuehong & Pei, Gang & Gao, Guangtao & Riffat, Saffa, 2020. "Evaluate the validity of the empirical correlations of clearance and friction coefficients to improve a scroll expander semi-empirical model," Energy, Elsevier, vol. 202(C).
    7. Luo, Xianglong & Wei, Youxing & Qiu, Guanfu & Liang, Yingzong & Chen, Jianyong & Yang, Zhi & Wang, Chao & Chen, Ying, 2020. "Simultaneous design and off-design operation optimization of a waste heat-driven organic Rankine cycle using a multi-period mathematical programming method," Energy, Elsevier, vol. 213(C).
    8. Fabio Fatigati & Diego Vittorini & Yaxiong Wang & Jian Song & Christos N. Markides & Roberto Cipollone, 2020. "Design and Operational Control Strategy for Optimum Off-Design Performance of an ORC Plant for Low-Grade Waste Heat Recovery," Energies, MDPI, vol. 13(21), pages 1-23, November.
    9. Kutlu, Cagri & Li, Jing & Su, Yuehong & Wang, Yubo & Pei, Gang & Riffat, Saffa, 2020. "Investigation of an innovative PV/T-ORC system using amorphous silicon cells and evacuated flat plate solar collectors," Energy, Elsevier, vol. 203(C).
    10. Liu, Liuchen & Zhu, Tong & Wang, Tiantian & Gao, Naiping, 2019. "Experimental investigation on the effect of working fluid charge in a small-scale Organic Rankine Cycle under off-design conditions," Energy, Elsevier, vol. 174(C), pages 664-677.
    11. Osman Özkaraca & Pınar Keçebaş & Cihan Demircan & Ali Keçebaş, 2017. "Thermodynamic Optimization of a Geothermal- Based Organic Rankine Cycle System Using an Artificial Bee Colony Algorithm," Energies, MDPI, vol. 10(11), pages 1-28, October.
    12. Petrollese, Mario & Cocco, Daniele, 2020. "A multi-scenario approach for a robust design of solar-based ORC systems," Renewable Energy, Elsevier, vol. 161(C), pages 1184-1194.
    13. Dawo, Fabian & Wieland, Christoph & Spliethoff, Hartmut, 2019. "Kalina power plant part load modeling: Comparison of different approaches to model part load behavior and validation on real operating data," Energy, Elsevier, vol. 174(C), pages 625-637.
    14. Wang, Z.X. & Du, S. & Wang, L.W. & Chen, X., 2020. "Parameter analysis of an ammonia-water power cycle with a gravity assisted thermal driven “pump” for low-grade heat recovery," Renewable Energy, Elsevier, vol. 146(C), pages 651-661.
    15. Kalina, Jacek & Świerzewski, Mateusz, 2019. "Identification of ORC unit operation in biomass-fired cogeneration system," Renewable Energy, Elsevier, vol. 142(C), pages 400-414.
    16. Chatzopoulou, Maria Anna & Lecompte, Steven & Paepe, Michel De & Markides, Christos N., 2019. "Off-design optimisation of organic Rankine cycle (ORC) engines with different heat exchangers and volumetric expanders in waste heat recovery applications," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    17. Wei, Youxing & Luo, Xianglong & Liang, Yingzong & Chen, Jianyong & Yang, Zhi & He, Jiacheng & Wang, Chao & Chen, Ying, 2022. "Time series aggregation-based design and operation optimization of a solar-driven organic Rankine cycle incorporating variation of environmental temperature and solar radiation," Renewable Energy, Elsevier, vol. 192(C), pages 87-106.
    18. Lecompte, Steven & Gusev, Sergei & Vanslambrouck, Bruno & De Paepe, Michel, 2018. "Experimental results of a small-scale organic Rankine cycle: Steady state identification and application to off-design model validation," Applied Energy, Elsevier, vol. 226(C), pages 82-106.
    19. Liu, Changwei & Gao, Tieyu, 2019. "Off-design performance analysis of basic ORC, ORC using zeotropic mixtures and composition-adjustable ORC under optimal control strategy," Energy, Elsevier, vol. 171(C), pages 95-108.
    20. Ancona, Maria Alessandra & Bianchi, Michele & Branchini, Lisa & De Pascale, Andrea & Melino, Francesco & Peretto, Antonio & Poletto, Chiara & Torricelli, Noemi, 2022. "Solar driven micro-ORC system assessment for residential application," Renewable Energy, Elsevier, vol. 195(C), pages 167-181.
    21. Imran, Muhammad & Pili, Roberto & Usman, Muhammad & Haglind, Fredrik, 2020. "Dynamic modeling and control strategies of organic Rankine cycle systems: Methods and challenges," Applied Energy, Elsevier, vol. 276(C).
    22. Xi, Huan & Zhang, Honghu & He, Ya-Ling & Huang, Zuohua, 2019. "Sensitivity analysis of operation parameters on the system performance of organic rankine cycle system using orthogonal experiment," Energy, Elsevier, vol. 172(C), pages 435-442.
    23. Bianchi, M. & Branchini, L. & De Pascale, A. & Melino, F. & Ottaviano, S. & Peretto, A. & Torricelli, N., 2020. "Replacement of R134a with low-GWP fluids in a kW-size reciprocating piston expander: Performance prediction and design optimization," Energy, Elsevier, vol. 206(C).
    24. Petrollese, Mario & Cau, Giorgio & Cocco, Daniele, 2020. "The Ottana solar facility: dispatchable power from small-scale CSP plants based on ORC systems," Renewable Energy, Elsevier, vol. 147(P3), pages 2932-2943.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rech, Sergio & Zandarin, Simone & Lazzaretto, Andrea & Frangopoulos, Christos A., 2017. "Design and off-design models of single and two-stage ORC systems on board a LNG carrier for the search of the optimal performance and control strategy," Applied Energy, Elsevier, vol. 204(C), pages 221-241.
    2. Osman Özkaraca & Pınar Keçebaş & Cihan Demircan & Ali Keçebaş, 2017. "Thermodynamic Optimization of a Geothermal- Based Organic Rankine Cycle System Using an Artificial Bee Colony Algorithm," Energies, MDPI, vol. 10(11), pages 1-28, October.
    3. Lecompte, Steven & Gusev, Sergei & Vanslambrouck, Bruno & De Paepe, Michel, 2018. "Experimental results of a small-scale organic Rankine cycle: Steady state identification and application to off-design model validation," Applied Energy, Elsevier, vol. 226(C), pages 82-106.
    4. Dickes, Rémi & Dumont, Olivier & Guillaume, Ludovic & Quoilin, Sylvain & Lemort, Vincent, 2018. "Charge-sensitive modelling of organic Rankine cycle power systems for off-design performance simulation," Applied Energy, Elsevier, vol. 212(C), pages 1262-1281.
    5. Fabio Fatigati & Diego Vittorini & Yaxiong Wang & Jian Song & Christos N. Markides & Roberto Cipollone, 2020. "Design and Operational Control Strategy for Optimum Off-Design Performance of an ORC Plant for Low-Grade Waste Heat Recovery," Energies, MDPI, vol. 13(21), pages 1-23, November.
    6. Ibarra, Mercedes & Rovira, Antonio & Alarcón-Padilla, Diego-César & Blanco, Julián, 2014. "Performance of a 5kWe Organic Rankine Cycle at part-load operation," Applied Energy, Elsevier, vol. 120(C), pages 147-158.
    7. Li, Yung-Ming & Hung, Tzu-Chen & Wu, Chia-Jung & Su, Ting-Ying & Xi, Huan & Wang, Chi-Chuan, 2021. "Experimental investigation of 3-kW organic Rankine cycle (ORC) system subject to heat source conditions: A new appraisal for assessment," Energy, Elsevier, vol. 217(C).
    8. Imran, Muhammad & Pili, Roberto & Usman, Muhammad & Haglind, Fredrik, 2020. "Dynamic modeling and control strategies of organic Rankine cycle systems: Methods and challenges," Applied Energy, Elsevier, vol. 276(C).
    9. Hu, Dongshuai & Zheng, Ya & Wu, Yi & Li, Saili & Dai, Yiping, 2015. "Off-design performance comparison of an organic Rankine cycle under different control strategies," Applied Energy, Elsevier, vol. 156(C), pages 268-279.
    10. Vaupel, Yannic & Huster, Wolfgang R. & Mhamdi, Adel & Mitsos, Alexander, 2021. "Optimal operating policies for organic Rankine cycles for waste heat recovery under transient conditions," Energy, Elsevier, vol. 224(C).
    11. Xuan Wang & Hua Tian & Gequn Shu, 2016. "Part-Load Performance Prediction and Operation Strategy Design of Organic Rankine Cycles with a Medium Cycle Used for Recovering Waste Heat from Gaseous Fuel Engines," Energies, MDPI, vol. 9(7), pages 1-21, July.
    12. Wieland, Christoph & Meinel, Dominik & Eyerer, Sebastian & Spliethoff, Hartmut, 2016. "Innovative CHP concept for ORC and its benefit compared to conventional concepts," Applied Energy, Elsevier, vol. 183(C), pages 478-490.
    13. Zhai, Huixing & An, Qingsong & Shi, Lin & Lemort, Vincent & Quoilin, Sylvain, 2016. "Categorization and analysis of heat sources for organic Rankine cycle systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 790-805.
    14. Tieyu Gao & Changwei Liu, 2017. "Off-Design Performances of Subcritical and Supercritical Organic Rankine Cycles in Geothermal Power Systems under an Optimal Control Strategy," Energies, MDPI, vol. 10(8), pages 1-25, August.
    15. Lisheng Pan & Huaixin Wang, 2019. "Experimental Investigation on Performance of an Organic Rankine Cycle System Integrated with a Radial Flow Turbine," Energies, MDPI, vol. 12(4), pages 1-20, February.
    16. Patrick Linke & Athanasios I. Papadopoulos & Panos Seferlis, 2015. "Systematic Methods for Working Fluid Selection and the Design, Integration and Control of Organic Rankine Cycles—A Review," Energies, MDPI, vol. 8(6), pages 1-47, May.
    17. Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    18. Francesco Calise & Davide Capuano & Laura Vanoli, 2015. "Dynamic Simulation and Exergo-Economic Optimization of a Hybrid Solar–Geothermal Cogeneration Plant," Energies, MDPI, vol. 8(4), pages 1-41, April.
    19. Ben-Ran Fu, 2016. "A Flow Rate Control Approach on Off-Design Analysis of an Organic Rankine Cycle System," Energies, MDPI, vol. 9(9), pages 1-9, September.
    20. Cao, Shuang & Xu, Jinliang & Miao, Zheng & Liu, Xiulong & Zhang, Ming & Xie, Xuewang & Li, Zhi & Zhao, Xiaoli & Tang, Guihua, 2019. "Steady and transient operation of an organic Rankine cycle power system," Renewable Energy, Elsevier, vol. 133(C), pages 284-294.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:123:y:2017:i:c:p:710-727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.