IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v156y2015icp268-279.html
   My bibliography  Save this article

Off-design performance comparison of an organic Rankine cycle under different control strategies

Author

Listed:
  • Hu, Dongshuai
  • Zheng, Ya
  • Wu, Yi
  • Li, Saili
  • Dai, Yiping

Abstract

This paper presents the off-design performance analysis of an organic Rankine cycle system in the view of control strategies. Variable inlet guide vanes and evaporating pressure are considered as control variables to adapt the system to the variable geothermal fluid mass flow rate and temperature. The optimal control strategy is studied to maximize the net power under the given geothermal source conditions. The constant pressure operation, the sliding pressure operation and the optimal control strategy are compared in order to analyze their differences. The results indicate that the constant pressure operation with variable inlet guide vanes generates more net power than the sliding pressure operation when the geothermal fluid mass flow rate is relative low. The optimal control strategy is determined by the off-design performance of evaporator and turbine. With fixed geothermal fluid temperature and variable geothermal fluid mass flow rate, the potential increase of the net power under the optimal operation can reach 4.7% and 11.0% for the constant and sliding pressure operation, respectively. When the geothermal fluid temperature decreases, the curve of net power tends to shift to the direction of larger geothermal fluid mass flow rate in all control strategies.

Suggested Citation

  • Hu, Dongshuai & Zheng, Ya & Wu, Yi & Li, Saili & Dai, Yiping, 2015. "Off-design performance comparison of an organic Rankine cycle under different control strategies," Applied Energy, Elsevier, vol. 156(C), pages 268-279.
  • Handle: RePEc:eee:appene:v:156:y:2015:i:c:p:268-279
    DOI: 10.1016/j.apenergy.2015.07.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915008582
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.07.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manente, Giovanni & Toffolo, Andrea & Lazzaretto, Andrea & Paci, Marco, 2013. "An Organic Rankine Cycle off-design model for the search of the optimal control strategy," Energy, Elsevier, vol. 58(C), pages 97-106.
    2. Quoilin, Sylvain & Aumann, Richard & Grill, Andreas & Schuster, Andreas & Lemort, Vincent & Spliethoff, Hartmut, 2011. "Dynamic modeling and optimal control strategy of waste heat recovery Organic Rankine Cycles," Applied Energy, Elsevier, vol. 88(6), pages 2183-2190, June.
    3. Wang, Jiangfeng & Dai, Yiping & Gao, Lin, 2009. "Exergy analyses and parametric optimizations for different cogeneration power plants in cement industry," Applied Energy, Elsevier, vol. 86(6), pages 941-948, June.
    4. Rayegan, R. & Tao, Y.X., 2011. "A procedure to select working fluids for Solar Organic Rankine Cycles (ORCs)," Renewable Energy, Elsevier, vol. 36(2), pages 659-670.
    5. Ben-Ran Fu & Sung-Wei Hsu & Yuh-Ren Lee & Jui-Ching Hsieh & Chia-Ming Chang & Chih-Hsi Liu, 2014. "Performance of a 250 kW Organic Rankine Cycle System for Off-Design Heat Source Conditions," Energies, MDPI, vol. 7(6), pages 1-11, June.
    6. Yamada, Noboru & Tominaga, Yoshihito & Yoshida, Takanori, 2014. "Demonstration of 10-Wp micro organic Rankine cycle generator for low-grade heat recovery," Energy, Elsevier, vol. 78(C), pages 806-813.
    7. Bamgbopa, Musbaudeen O. & Uzgoren, Eray, 2013. "Numerical analysis of an organic Rankine cycle under steady and variable heat input," Applied Energy, Elsevier, vol. 107(C), pages 219-228.
    8. Ibarra, Mercedes & Rovira, Antonio & Alarcón-Padilla, Diego-César & Blanco, Julián, 2014. "Performance of a 5kWe Organic Rankine Cycle at part-load operation," Applied Energy, Elsevier, vol. 120(C), pages 147-158.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ibarra, Mercedes & Rovira, Antonio & Alarcón-Padilla, Diego-César & Blanco, Julián, 2014. "Performance of a 5kWe Organic Rankine Cycle at part-load operation," Applied Energy, Elsevier, vol. 120(C), pages 147-158.
    2. Dickes, Rémi & Dumont, Olivier & Daccord, Rémi & Quoilin, Sylvain & Lemort, Vincent, 2017. "Modelling of organic Rankine cycle power systems in off-design conditions: An experimentally-validated comparative study," Energy, Elsevier, vol. 123(C), pages 710-727.
    3. Carlo Carcasci & Lapo Cheli & Pietro Lubello & Lorenzo Winchler, 2020. "Off-Design Performances of an Organic Rankine Cycle for Waste Heat Recovery from Gas Turbines," Energies, MDPI, vol. 13(5), pages 1-15, March.
    4. Lisheng Pan & Huaixin Wang, 2019. "Experimental Investigation on Performance of an Organic Rankine Cycle System Integrated with a Radial Flow Turbine," Energies, MDPI, vol. 12(4), pages 1-20, February.
    5. Patrick Linke & Athanasios I. Papadopoulos & Panos Seferlis, 2015. "Systematic Methods for Working Fluid Selection and the Design, Integration and Control of Organic Rankine Cycles—A Review," Energies, MDPI, vol. 8(6), pages 1-47, May.
    6. Osman Özkaraca & Pınar Keçebaş & Cihan Demircan & Ali Keçebaş, 2017. "Thermodynamic Optimization of a Geothermal- Based Organic Rankine Cycle System Using an Artificial Bee Colony Algorithm," Energies, MDPI, vol. 10(11), pages 1-28, October.
    7. Francesco Calise & Davide Capuano & Laura Vanoli, 2015. "Dynamic Simulation and Exergo-Economic Optimization of a Hybrid Solar–Geothermal Cogeneration Plant," Energies, MDPI, vol. 8(4), pages 1-41, April.
    8. Cao, Shuang & Xu, Jinliang & Miao, Zheng & Liu, Xiulong & Zhang, Ming & Xie, Xuewang & Li, Zhi & Zhao, Xiaoli & Tang, Guihua, 2019. "Steady and transient operation of an organic Rankine cycle power system," Renewable Energy, Elsevier, vol. 133(C), pages 284-294.
    9. Rech, Sergio & Zandarin, Simone & Lazzaretto, Andrea & Frangopoulos, Christos A., 2017. "Design and off-design models of single and two-stage ORC systems on board a LNG carrier for the search of the optimal performance and control strategy," Applied Energy, Elsevier, vol. 204(C), pages 221-241.
    10. Varma, G.V. Pradeep & Srinivas, T., 2017. "Power generation from low temperature heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 402-414.
    11. Tailu Li & Zeyu Wang & Jingyi Wang & Xiang Gao, 2023. "Dynamic Performance of Organic Rankine Cycle Driven by Fluctuant Industrial Waste Heat for Building Power Supply," Energies, MDPI, vol. 16(2), pages 1-24, January.
    12. Wieland, Christoph & Meinel, Dominik & Eyerer, Sebastian & Spliethoff, Hartmut, 2016. "Innovative CHP concept for ORC and its benefit compared to conventional concepts," Applied Energy, Elsevier, vol. 183(C), pages 478-490.
    13. Shi, Rongqi & He, Tianqi & Peng, Jie & Zhang, Yangjun & Zhuge, Weilin, 2016. "System design and control for waste heat recovery of automotive engines based on Organic Rankine Cycle," Energy, Elsevier, vol. 102(C), pages 276-286.
    14. Petrollese, Mario & Cau, Giorgio & Cocco, Daniele, 2020. "The Ottana solar facility: dispatchable power from small-scale CSP plants based on ORC systems," Renewable Energy, Elsevier, vol. 147(P3), pages 2932-2943.
    15. Vélez, Fredy & Segovia, José J. & Martín, M. Carmen & Antolín, Gregorio & Chejne, Farid & Quijano, Ana, 2012. "A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4175-4189.
    16. Tieyu Gao & Changwei Liu, 2017. "Off-Design Performances of Subcritical and Supercritical Organic Rankine Cycles in Geothermal Power Systems under an Optimal Control Strategy," Energies, MDPI, vol. 10(8), pages 1-25, August.
    17. Buonomano, Annamaria & Calise, Francesco & Palombo, Adolfo & Vicidomini, Maria, 2015. "Energy and economic analysis of geothermal–solar trigeneration systems: A case study for a hotel building in Ischia," Applied Energy, Elsevier, vol. 138(C), pages 224-241.
    18. Cavazzini, G. & Bari, S. & Pavesi, G. & Ardizzon, G., 2017. "A multi-fluid PSO-based algorithm for the search of the best performance of sub-critical Organic Rankine Cycles," Energy, Elsevier, vol. 129(C), pages 42-58.
    19. Baccioli, A. & Antonelli, M. & Desideri, U., 2017. "Technical and economic analysis of organic flash regenerative cycles (OFRCs) for low temperature waste heat recovery," Applied Energy, Elsevier, vol. 199(C), pages 69-87.
    20. Ben-Ran Fu & Sung-Wei Hsu & Yuh-Ren Lee & Jui-Ching Hsieh & Chia-Ming Chang & Chih-Hsi Liu, 2014. "Performance of a 250 kW Organic Rankine Cycle System for Off-Design Heat Source Conditions," Energies, MDPI, vol. 7(6), pages 1-11, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:156:y:2015:i:c:p:268-279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.