IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v146y2020icp651-661.html
   My bibliography  Save this article

Parameter analysis of an ammonia-water power cycle with a gravity assisted thermal driven “pump” for low-grade heat recovery

Author

Listed:
  • Wang, Z.X.
  • Du, S.
  • Wang, L.W.
  • Chen, X.

Abstract

The diaphragm pump is commonly utilized in the small-scale ammonia-water power cycle for pumping the liquid from absorber to evaporator. The electricity consumption and possible leakage of such a pump influence the system efficiency and reliability significantly. In order to find an alternative “pump” with high reliability and low cost, a gravity assisted thermal driven “pump” (GTP), which is consisted of three top-down organized units connecting absorber and evaporator separately, is designed. With the charging and discharging phases, the pressure in each unit fluctuates, and the level of the liquid increases and decreases alternately by the function of gravity. The results of the system show that the net work and thermal efficiency are 10.68 kW and 9.9%, respectively, when the evaporator and absorber are at 140 °C/4000 kPa and 25 °C/800 kPa separately. The optimal net work, thermal efficiency and exergy efficiency are improved by 4.87%, 3.62% and 10.06% respectively compared with the conventional cycle. An application of the GTP power cycle with the capacity of 10 kW driven by the biomass boiler is analyzed, and the results show that the electricity produced by 645 kg biomass pellets can support more than 12 households per day.

Suggested Citation

  • Wang, Z.X. & Du, S. & Wang, L.W. & Chen, X., 2020. "Parameter analysis of an ammonia-water power cycle with a gravity assisted thermal driven “pump” for low-grade heat recovery," Renewable Energy, Elsevier, vol. 146(C), pages 651-661.
  • Handle: RePEc:eee:renene:v:146:y:2020:i:c:p:651-661
    DOI: 10.1016/j.renene.2019.07.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119310341
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.07.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, X. & Wang, R.Z. & Du, S., 2017. "An improved cycle for large temperature lifts application in water-ammonia absorption system," Energy, Elsevier, vol. 118(C), pages 1361-1369.
    2. Dickes, Rémi & Dumont, Olivier & Guillaume, Ludovic & Quoilin, Sylvain & Lemort, Vincent, 2018. "Charge-sensitive modelling of organic Rankine cycle power systems for off-design performance simulation," Applied Energy, Elsevier, vol. 212(C), pages 1262-1281.
    3. Ntavou, Erika & Kosmadakis, George & Manolakos, Dimitris & Papadakis, George & Papantonis, Dimitris, 2017. "Experimental testing of a small-scale two stage Organic Rankine Cycle engine operating at low temperature," Energy, Elsevier, vol. 141(C), pages 869-879.
    4. Quoilin, Sylvain & Lemort, Vincent & Lebrun, Jean, 2010. "Experimental study and modeling of an Organic Rankine Cycle using scroll expander," Applied Energy, Elsevier, vol. 87(4), pages 1260-1268, April.
    5. Li, Jing & Li, Pengcheng & Pei, Gang & Alvi, Jahan Zeb & Ji, Jie, 2016. "Analysis of a novel solar electricity generation system using cascade Rankine cycle and steam screw expander," Applied Energy, Elsevier, vol. 165(C), pages 627-638.
    6. Mohammadkhani, Farzad & Ranjbar, Faramarz & Yari, Mortaza, 2015. "A comparative study on the ammonia–water based bottoming power cycles: The exergoeconomic viewpoint," Energy, Elsevier, vol. 87(C), pages 425-434.
    7. Dickes, Rémi & Dumont, Olivier & Daccord, Rémi & Quoilin, Sylvain & Lemort, Vincent, 2017. "Modelling of organic Rankine cycle power systems in off-design conditions: An experimentally-validated comparative study," Energy, Elsevier, vol. 123(C), pages 710-727.
    8. Eyerer, Sebastian & Wieland, Christoph & Vandersickel, Annelies & Spliethoff, Hartmut, 2016. "Experimental study of an ORC (Organic Rankine Cycle) and analysis of R1233zd-E as a drop-in replacement for R245fa for low temperature heat utilization," Energy, Elsevier, vol. 103(C), pages 660-671.
    9. Gao, P. & Wang, L.W. & Wang, R.Z. & Jiang, L. & Zhou, Z.S., 2015. "Experimental investigation on a small pumpless ORC (organic rankine cycle) system driven by the low temperature heat source," Energy, Elsevier, vol. 91(C), pages 324-333.
    10. Sun, Liuli & Han, Wei & Jing, Xuye & Zheng, Danxing & Jin, Hongguang, 2013. "A power and cooling cogeneration system using mid/low-temperature heat source," Applied Energy, Elsevier, vol. 112(C), pages 886-897.
    11. Liu, Liuchen & Zhu, Tong & Wang, Tiantian & Gao, Naiping, 2019. "Experimental investigation on the effect of working fluid charge in a small-scale Organic Rankine Cycle under off-design conditions," Energy, Elsevier, vol. 174(C), pages 664-677.
    12. Kim, Dong Kyu & Lee, Ji Sung & Kim, Jinwoo & Kim, Mo Se & Kim, Min Soo, 2017. "Parametric study and performance evaluation of an organic Rankine cycle (ORC) system using low-grade heat at temperatures below 80°C," Applied Energy, Elsevier, vol. 189(C), pages 55-65.
    13. Pang, Kuo-Cheng & Chen, Shih-Chi & Hung, Tzu-Chen & Feng, Yong-Qiang & Yang, Shih-Cheng & Wong, Kin-Wah & Lin, Jaw-Ren, 2017. "Experimental study on organic Rankine cycle utilizing R245fa, R123 and their mixtures to investigate the maximum power generation from low-grade heat," Energy, Elsevier, vol. 133(C), pages 636-651.
    14. Zheng, N. & Zhao, L. & Wang, X.D. & Tan, Y.T., 2013. "Experimental verification of a rolling-piston expander that applied for low-temperature Organic Rankine Cycle," Applied Energy, Elsevier, vol. 112(C), pages 1265-1274.
    15. Li, Xian & Kan, Xiang & Sun, Xiangyu & Zhao, Yao & Ge, Tianshu & Dai, Yanjun & Wang, Chi-Hwa, 2019. "Performance analysis of a biomass gasification-based CCHP system integrated with variable-effect LiBr-H2O absorption cooling and desiccant dehumidification," Energy, Elsevier, vol. 176(C), pages 961-979.
    16. Jiang, L. & Lu, H.T. & Wang, L.W. & Gao, P. & Zhu, F.Q. & Wang, R.Z. & Roskilly, A.P., 2017. "Investigation on a small-scale pumpless Organic Rankine Cycle (ORC) system driven by the low temperature heat source," Applied Energy, Elsevier, vol. 195(C), pages 478-486.
    17. Yang, Mina & Lee, Seung Yeob & Chung, Jin Taek & Kang, Yong Tae, 2017. "High efficiency H2O/LiBr double effect absorption cycles with multi-heat sources for tri-generation application," Applied Energy, Elsevier, vol. 187(C), pages 243-254.
    18. Chen, X. & Wang, R.Z. & Du, S., 2017. "Heat integration of ammonia-water absorption refrigeration system through heat-exchanger network analysis," Energy, Elsevier, vol. 141(C), pages 1585-1599.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Liuchen & Zhu, Tong & Wang, Tiantian & Gao, Naiping, 2019. "Experimental investigation on the effect of working fluid charge in a small-scale Organic Rankine Cycle under off-design conditions," Energy, Elsevier, vol. 174(C), pages 664-677.
    2. Feng, Yong-qiang & Hung, Tzu-Chen & Su, Ting-Ying & Wang, Shuang & Wang, Qian & Yang, Shih-Cheng & Lin, Jaw-Ren & Lin, Chih-Hung, 2017. "Experimental investigation of a R245fa-based organic Rankine cycle adapting two operation strategies: Stand alone and grid connect," Energy, Elsevier, vol. 141(C), pages 1239-1253.
    3. Li, Jing & Gao, Guangtao & Li, Pengcheng & Pei, Gang & Huang, Hulin & Su, Yuehong & Ji, Jie, 2018. "Experimental study of organic Rankine cycle in the presence of non-condensable gases," Energy, Elsevier, vol. 142(C), pages 739-753.
    4. Zhang, Xuefeng & Wang, Liwei & Zhu, Hanyu, 2022. "Investigation on a novel pumpless module driven by thermal energy and gravity and its application in an ORC system," Renewable Energy, Elsevier, vol. 195(C), pages 476-487.
    5. Landelle, Arnaud & Tauveron, Nicolas & Haberschill, Philippe & Revellin, Rémi & Colasson, Stéphane, 2017. "Organic Rankine cycle design and performance comparison based on experimental database," Applied Energy, Elsevier, vol. 204(C), pages 1172-1187.
    6. Zhao, Ying-Kun & Lei, Biao & Wu, Yu-Ting & Zhi, Rui-Ping & Wang, Wei & Guo, Hang & Ma, Chong-Fang, 2018. "Experimental study on the net efficiency of an Organic Rankine Cycle with single screw expander in different seasons," Energy, Elsevier, vol. 165(PB), pages 769-775.
    7. Oh, Jinwoo & Jeong, Hoyoung & Lee, Hoseong, 2021. "Experimental and numerical analysis on low-temperature off-design organic Rankine cycle in perspective of mass conservation," Energy, Elsevier, vol. 234(C).
    8. Jin, Yunli & Gao, Naiping & Zhu, Tong, 2022. "Effect of resistive load characteristics on the performance of Organic Rankine cycle (ORC)," Energy, Elsevier, vol. 246(C).
    9. Oh, Jinwoo & Park, Yunjae & Lee, Hoseong, 2022. "Development of a fully deterministic simulation model for organic Rankine cycle operating under off-design conditions," Applied Energy, Elsevier, vol. 307(C).
    10. Lecompte, Steven & Gusev, Sergei & Vanslambrouck, Bruno & De Paepe, Michel, 2018. "Experimental results of a small-scale organic Rankine cycle: Steady state identification and application to off-design model validation," Applied Energy, Elsevier, vol. 226(C), pages 82-106.
    11. Ruiqi Wang & Long Jiang & Zhiwei Ma & Abigail Gonzalez-Diaz & Yaodong Wang & Anthony Paul Roskilly, 2019. "Comparative Analysis of Small-Scale Organic Rankine Cycle Systems for Solar Energy Utilisation," Energies, MDPI, vol. 12(5), pages 1-22, March.
    12. Wang, Zhiqi & Pan, Huihui & Xia, Xiaoxia & Xie, Baoqi & Peng, Deqi & Yang, Huya, 2022. "Experimental investigation on steady and dynamic performance of organic Rankine cycle with R245fa/R141b under different cooling and expander speed conditions," Energy, Elsevier, vol. 241(C).
    13. Bamorovat Abadi, Gholamreza & Kim, Kyung Chun, 2017. "Investigation of organic Rankine cycles with zeotropic mixtures as a working fluid: Advantages and issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1000-1013.
    14. Yamada, Noboru & Tominaga, Yoshihito & Yoshida, Takanori, 2014. "Demonstration of 10-Wp micro organic Rankine cycle generator for low-grade heat recovery," Energy, Elsevier, vol. 78(C), pages 806-813.
    15. Wang, Wei & Qiao, Han & Lei, Biao & Wu, Yu-ting & Ma, Chong-fang, 2021. "Experimental study on the influence of inlet and exhaust pressure loss on the performance of single screw expanders," Energy, Elsevier, vol. 232(C).
    16. Xi, Huan & Zhang, Honghu & He, Ya-Ling & Huang, Zuohua, 2019. "Sensitivity analysis of operation parameters on the system performance of organic rankine cycle system using orthogonal experiment," Energy, Elsevier, vol. 172(C), pages 435-442.
    17. Lisheng Pan & Huaixin Wang, 2019. "Experimental Investigation on Performance of an Organic Rankine Cycle System Integrated with a Radial Flow Turbine," Energies, MDPI, vol. 12(4), pages 1-20, February.
    18. Jiménez-Arreola, Manuel & Wieland, Christoph & Romagnoli, Alessandro, 2019. "Direct vs indirect evaporation in Organic Rankine Cycle (ORC) systems: A comparison of the dynamic behavior for waste heat recovery of engine exhaust," Applied Energy, Elsevier, vol. 242(C), pages 439-452.
    19. Kutlu, Cagri & Erdinc, Mehmet Tahir & Li, Jing & Su, Yuehong & Pei, Gang & Gao, Guangtao & Riffat, Saffa, 2020. "Evaluate the validity of the empirical correlations of clearance and friction coefficients to improve a scroll expander semi-empirical model," Energy, Elsevier, vol. 202(C).
    20. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:146:y:2020:i:c:p:651-661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.