IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i19p3656-d270413.html
   My bibliography  Save this article

Parametric Optimisation of an ORC in a Wood Chipboard Production Facility to Recover Waste Heat Produced from the Drying and Steam Production Process

Author

Listed:
  • Yıldız Koç

    (Department of Mechanical Engineering, Faculty of Engineering and Natural Sciences, Iskenderun Technical University, Hatay 31200, Turkey)

Abstract

The wastes in wood industries (waste chips) are commonly used as fuel for burners to produce steam and to use the remaining heat in the drying process. However, in spite of that, there is a considerable amount of heat evaluated from the burn of waste chips still released to the atmosphere without use. Therefore, in the present study, a cogeneration cycle design by used of ORC was designed and parametrically optimised for six organic working fluids (acetone, ethanol, R11, RE245fa2, R365mfc and R601a). During the ORC optimisation, the ORC turbine inlet temperature was changed from the saturated steam temperature of the fluid to the maximum temperature of the fluid. The ORC turbine inlet pressure was increased from 7.5 bar to the critical pressure of the fluid. As a result of the study, the maximum net power, net thermal efficiency and exergy efficiency of the ORC were found as 453.91 kW, 30.01% and 67.56% at 340 °C and 62.5 bar from the ORC with ethanol. This means that almost 30% of the waste heat could be recovered by use of the ORC with ethanol. By using the designed cogeneration system, it was calculated that the thermal efficiency of the system can be increased up to 74.01%.

Suggested Citation

  • Yıldız Koç, 2019. "Parametric Optimisation of an ORC in a Wood Chipboard Production Facility to Recover Waste Heat Produced from the Drying and Steam Production Process," Energies, MDPI, vol. 12(19), pages 1-22, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3656-:d:270413
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/19/3656/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/19/3656/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tilia Dahou & Patrick Dutournié & Lionel Limousy & Simona Bennici & Nicolas Perea, 2019. "Recovery of Low-Grade Heat (Heat Waste) from a Cogeneration Unit for Woodchips Drying: Energy and Economic Analyses," Energies, MDPI, vol. 12(3), pages 1-17, February.
    2. Desideri, Adriano & Gusev, Sergei & van den Broek, Martijn & Lemort, Vincent & Quoilin, Sylvain, 2016. "Experimental comparison of organic fluids for low temperature ORC (organic Rankine cycle) systems for waste heat recovery applications," Energy, Elsevier, vol. 97(C), pages 460-469.
    3. Aghbashlo, Mortaza & Tabatabaei, Meisam & Soltanian, Salman & Ghanavati, Hossein, 2019. "Biopower and biofertilizer production from organic municipal solid waste: An exergoenvironmental analysis," Renewable Energy, Elsevier, vol. 143(C), pages 64-76.
    4. Dickes, Rémi & Dumont, Olivier & Daccord, Rémi & Quoilin, Sylvain & Lemort, Vincent, 2017. "Modelling of organic Rankine cycle power systems in off-design conditions: An experimentally-validated comparative study," Energy, Elsevier, vol. 123(C), pages 710-727.
    5. Chys, M. & van den Broek, M. & Vanslambrouck, B. & De Paepe, M., 2012. "Potential of zeotropic mixtures as working fluids in organic Rankine cycles," Energy, Elsevier, vol. 44(1), pages 623-632.
    6. Peris, Bernardo & Navarro-Esbrí, Joaquín & Molés, Francisco & Mota-Babiloni, Adrián, 2015. "Experimental study of an ORC (organic Rankine cycle) for low grade waste heat recovery in a ceramic industry," Energy, Elsevier, vol. 85(C), pages 534-542.
    7. Pezzuolo, Alex & Benato, Alberto & Stoppato, Anna & Mirandola, Alberto, 2016. "The ORC-PD: A versatile tool for fluid selection and Organic Rankine Cycle unit design," Energy, Elsevier, vol. 102(C), pages 605-620.
    8. Yang, Ao & Su, Yang & Chien, I-Lung & Jin, Saimeng & Yan, Chenglei & Wei, Shun'an & Shen, Weifeng, 2019. "Investigation of an energy-saving double-thermally coupled extractive distillation for separating ternary system benzene/toluene/cyclohexane," Energy, Elsevier, vol. 186(C).
    9. Yari, M. & Mehr, A.S. & Zare, V. & Mahmoudi, S.M.S. & Rosen, M.A., 2015. "Exergoeconomic comparison of TLC (trilateral Rankine cycle), ORC (organic Rankine cycle) and Kalina cycle using a low grade heat source," Energy, Elsevier, vol. 83(C), pages 712-722.
    10. Marion, Michaël & Voicu, Ionut & Tiffonnet, Anne-Lise, 2012. "Study and optimization of a solar subcritical organic Rankine cycle," Renewable Energy, Elsevier, vol. 48(C), pages 100-109.
    11. Chatzopoulou, Maria Anna & Simpson, Michael & Sapin, Paul & Markides, Christos N., 2019. "Off-design optimisation of organic Rankine cycle (ORC) engines with piston expanders for medium-scale combined heat and power applications," Applied Energy, Elsevier, vol. 238(C), pages 1211-1236.
    12. Yıldız Koç & Hüseyin Yağlı & Ali Koç, 2019. "Exergy Analysis and Performance Improvement of a Subcritical/Supercritical Organic Rankine Cycle (ORC) for Exhaust Gas Waste Heat Recovery in a Biogas Fuelled Combined Heat and Power (CHP) Engine Thro," Energies, MDPI, vol. 12(4), pages 1-22, February.
    13. Uris, María & Linares, José Ignacio & Arenas, Eva, 2017. "Feasibility assessment of an Organic Rankine Cycle (ORC) cogeneration plant (CHP/CCHP) fueled by biomass for a district network in mainland Spain," Energy, Elsevier, vol. 133(C), pages 969-985.
    14. Guillermo Valencia & Armando Fontalvo & Yulineth Cárdenas & Jorge Duarte & Cesar Isaza, 2019. "Energy and Exergy Analysis of Different Exhaust Waste Heat Recovery Systems for Natural Gas Engine Based on ORC," Energies, MDPI, vol. 12(12), pages 1-22, June.
    15. Navarro-Esbrí, Joaquín & Molés, Francisco & Peris, Bernardo & Mota-Babiloni, Adrián & Kontomaris, Konstantinos, 2017. "Experimental study of an Organic Rankine Cycle with HFO-1336mzz-Z as a low global warming potential working fluid for micro-scale low temperature applications," Energy, Elsevier, vol. 133(C), pages 79-89.
    16. Wang, E.H. & Zhang, H.G. & Fan, B.Y. & Ouyang, M.G. & Zhao, Y. & Mu, Q.H., 2011. "Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery," Energy, Elsevier, vol. 36(5), pages 3406-3418.
    17. Yağlı, Hüseyin & Koç, Yıldız & Koç, Ali & Görgülü, Adnan & Tandiroğlu, Ahmet, 2016. "Parametric optimization and exergetic analysis comparison of subcritical and supercritical organic Rankine cycle (ORC) for biogas fuelled combined heat and power (CHP) engine exhaust gas waste heat," Energy, Elsevier, vol. 111(C), pages 923-932.
    18. Song, Chongzhi & Gu, Mingyan & Miao, Zheng & Liu, Chao & Xu, Jinliang, 2019. "Effect of fluid dryness and critical temperature on trans-critical organic Rankine cycle," Energy, Elsevier, vol. 174(C), pages 97-109.
    19. Yamada, Noboru & Mohamad, Md Nor Anuar & Kien, Trinh Trung, 2012. "Study on thermal efficiency of low- to medium-temperature organic Rankine cycles using HFO−1234yf," Renewable Energy, Elsevier, vol. 41(C), pages 368-375.
    20. Al-Hamamre, Zayed & Saidan, Motasem & Hararah, Muhanned & Rawajfeh, Khaled & Alkhasawneh, Hussam E. & Al-Shannag, Mohammad, 2017. "Wastes and biomass materials as sustainable-renewable energy resources for Jordan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 295-314.
    21. T. M. I. Mahlia & H. Syaheed & A. E. Pg Abas & F. Kusumo & A. H. Shamsuddin & Hwai Chyuan Ong & M. R. Bilad, 2019. "Organic Rankine Cycle (ORC) System Applications for Solar Energy: Recent Technological Advances," Energies, MDPI, vol. 12(15), pages 1-19, July.
    22. Costante Invernizzi & Marco Binotti & Paola Bombarda & Gioele Di Marcoberardino & Paolo Iora & Giampaolo Manzolini, 2019. "Water Mixtures as Working Fluids in Organic Rankine Cycles," Energies, MDPI, vol. 12(13), pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saboora Khatoon & Nasser Mohammed A. Almefreji & Man-Hoe Kim, 2021. "Thermodynamic Study of a Combined Power and Refrigeration System for Low-Grade Heat Energy Source," Energies, MDPI, vol. 14(2), pages 1-13, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Youcef Redjeb & Khatima Kaabeche-Djerafi & Anna Stoppato & Alberto Benato, 2021. "The IRC-PD Tool: A Code to Design Steam and Organic Waste Heat Recovery Units," Energies, MDPI, vol. 14(18), pages 1-37, September.
    2. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    3. Cavazzini, G. & Bari, S. & Pavesi, G. & Ardizzon, G., 2017. "A multi-fluid PSO-based algorithm for the search of the best performance of sub-critical Organic Rankine Cycles," Energy, Elsevier, vol. 129(C), pages 42-58.
    4. Xi, Huan & Zhang, Honghu & He, Ya-Ling & Huang, Zuohua, 2019. "Sensitivity analysis of operation parameters on the system performance of organic rankine cycle system using orthogonal experiment," Energy, Elsevier, vol. 172(C), pages 435-442.
    5. Bamorovat Abadi, Gholamreza & Yun, Eunkoo & Kim, Kyung Chun, 2015. "Experimental study of a 1 kw organic Rankine cycle with a zeotropic mixture of R245fa/R134a," Energy, Elsevier, vol. 93(P2), pages 2363-2373.
    6. Fabio Fatigati & Diego Vittorini & Yaxiong Wang & Jian Song & Christos N. Markides & Roberto Cipollone, 2020. "Design and Operational Control Strategy for Optimum Off-Design Performance of an ORC Plant for Low-Grade Waste Heat Recovery," Energies, MDPI, vol. 13(21), pages 1-23, November.
    7. Yıldız Koç & Hüseyin Yağlı & Ali Koç, 2019. "Exergy Analysis and Performance Improvement of a Subcritical/Supercritical Organic Rankine Cycle (ORC) for Exhaust Gas Waste Heat Recovery in a Biogas Fuelled Combined Heat and Power (CHP) Engine Thro," Energies, MDPI, vol. 12(4), pages 1-22, February.
    8. Alberto Benato & Alarico Macor, 2017. "Biogas Engine Waste Heat Recovery Using Organic Rankine Cycle," Energies, MDPI, vol. 10(3), pages 1-18, March.
    9. Xu, Weicong & Zhao, Li & Mao, Samuel S. & Deng, Shuai, 2020. "Towards novel low temperature thermodynamic cycle: A critical review originated from organic Rankine cycle," Applied Energy, Elsevier, vol. 270(C).
    10. Kolahchian Tabrizi, Mehrshad & Bonalumi, Davide, 2022. "Techno-economic performance of the 2-propanol/1-butanol zeotropic mixture and 2-propanol/water azeotropic mixture as a working fluid in Organic Rankine Cycles," Energy, Elsevier, vol. 246(C).
    11. Antonio Mariani & Biagio Morrone & Davide Laiso & Maria Vittoria Prati & Andrea Unich, 2022. "Waste Heat Recovery in a Compression Ignition Engine for Marine Application Using a Rankine Cycle Operating with an Innovative Organic Working Fluid," Energies, MDPI, vol. 15(21), pages 1-18, October.
    12. He, Chao & Liu, Chao & Zhou, Mengtong & Xie, Hui & Xu, Xiaoxiao & Wu, Shuangying & Li, Yourong, 2014. "A new selection principle of working fluids for subcritical organic Rankine cycle coupling with different heat sources," Energy, Elsevier, vol. 68(C), pages 283-291.
    13. Li, Tailu & Zhu, Jialing & Hu, Kaiyong & Kang, Zhenhua & Zhang, Wei, 2014. "Implementation of PDORC (parallel double-evaporator organic Rankine cycle) to enhance power output in oilfield," Energy, Elsevier, vol. 68(C), pages 680-687.
    14. Xin, Liyong & Liu, Chao & Tan, Luxi & Xu, Xiaoxiao & Li, Qibin & Huo, Erguang & Sun, Kuan, 2021. "Thermal stability and pyrolysis products of HFO-1234yf as an environment-friendly working fluid for Organic Rankine Cycle," Energy, Elsevier, vol. 228(C).
    15. Bamorovat Abadi, Gholamreza & Kim, Kyung Chun, 2017. "Investigation of organic Rankine cycles with zeotropic mixtures as a working fluid: Advantages and issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1000-1013.
    16. Ge, Zhong & Wang, Hua & Wang, Hui-Tao & Wang, Jian-Jun & Li, Ming & Wu, Fu-Zhong & Zhang, Song-Yuan, 2015. "Main parameters optimization of regenerative organic Rankine cycle driven by low-temperature flue gas waste heat," Energy, Elsevier, vol. 93(P2), pages 1886-1895.
    17. Liang, Zheng & Liang, Yingzong & Luo, Xianglong & Chen, Jianyong & Yang, Zhi & Wang, Chao & Chen, Ying, 2022. "Superstructure-based mixed-integer nonlinear programming framework for hybrid heat sources driven organic Rankine cycle optimization," Applied Energy, Elsevier, vol. 307(C).
    18. Yu, Haoshui & Gundersen, Truls & Feng, Xiao, 2018. "Process integration of organic Rankine cycle (ORC) and heat pump for low temperature waste heat recovery," Energy, Elsevier, vol. 160(C), pages 330-340.
    19. Ivan Korolija & Richard Greenough, 2016. "Modelling the Influence of Climate on the Performance of the Organic Rankine Cycle for Industrial Waste Heat Recovery," Energies, MDPI, vol. 9(5), pages 1-20, May.
    20. Niu, Jintao & Wang, Jiansheng & Liu, Xueling, 2023. "Thermodynamic and economic analysis of organic Rankine cycle combined with flash cycle and ejector," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3656-:d:270413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.