IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i7p527-d73702.html
   My bibliography  Save this article

Part-Load Performance Prediction and Operation Strategy Design of Organic Rankine Cycles with a Medium Cycle Used for Recovering Waste Heat from Gaseous Fuel Engines

Author

Listed:
  • Xuan Wang

    (State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China)

  • Hua Tian

    (State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China)

  • Gequn Shu

    (State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China)

Abstract

The Organic Rankine Cycle (ORC) is regarded as a suitable way to recover waste heat from gaseous fuel internal combustion engines. As waste heat recovery systems (WHRS) have always been designed based on rated working conditions, while engines often work under part-load conditions, it is quite significant to analyze the part-load performance and corresponding operation strategy of ORC systems. This paper presents a dynamic model of ORC with a medium cycle used for a large gaseous fuel engine and analyzes the effect of adjustable parameters on the system performance, giving effective control directions under various conditions. The results indicate that the intermediary fluid mass flow rate has nearly no effect on the output power and thermal efficiency of the ORC, while the mass flow rate of working fluid has a great effect on them. In order to get a better system performance under different working conditions, the system should be operated with the working fluid mass flow rate as large as possible, but with a slight degree of superheating. Then, with the control of constant superheat degree at the end of the heating process, the performance of the combined system that consists of ORC and the engine at steady state under seven typical working conditions is also analyzed. The results indicate that the energy-saving effect of WHRS becomes worse and worse as the working condition decreases. Especially at 40% working condition the WHRS nearly has no energy-saving effect anymore.

Suggested Citation

  • Xuan Wang & Hua Tian & Gequn Shu, 2016. "Part-Load Performance Prediction and Operation Strategy Design of Organic Rankine Cycles with a Medium Cycle Used for Recovering Waste Heat from Gaseous Fuel Engines," Energies, MDPI, vol. 9(7), pages 1-21, July.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:7:p:527-:d:73702
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/7/527/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/7/527/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Benato, A. & Kærn, M.R. & Pierobon, L. & Stoppato, A. & Haglind, F., 2015. "Analysis of hot spots in boilers of organic Rankine cycle units during transient operation," Applied Energy, Elsevier, vol. 151(C), pages 119-131.
    2. Mazzi, N. & Rech, S. & Lazzaretto, A., 2015. "Off-design dynamic model of a real Organic Rankine Cycle system fuelled by exhaust gases from industrial processes," Energy, Elsevier, vol. 90(P1), pages 537-551.
    3. Wang, Tianyou & Zhang, Yajun & Peng, Zhijun & Shu, Gequn, 2011. "A review of researches on thermal exhaust heat recovery with Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2862-2871, August.
    4. Yu, Guopeng & Shu, Gequn & Tian, Hua & Wei, Haiqiao & Liu, Lina, 2013. "Simulation and thermodynamic analysis of a bottoming Organic Rankine Cycle (ORC) of diesel engine (DE)," Energy, Elsevier, vol. 51(C), pages 281-290.
    5. Zhang, Jianhua & Zhou, Yeli & Wang, Rui & Xu, Jinliang & Fang, Fang, 2014. "Modeling and constrained multivariable predictive control for ORC (Organic Rankine Cycle) based waste heat energy conversion systems," Energy, Elsevier, vol. 66(C), pages 128-138.
    6. Gewald, Daniela & Siokos, Konstantinos & Karellas, Sotirios & Spliethoff, Hartmut, 2012. "Waste heat recovery from a landfill gas-fired power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1779-1789.
    7. Schuster, A. & Karellas, S. & Aumann, R., 2010. "Efficiency optimization potential in supercritical Organic Rankine Cycles," Energy, Elsevier, vol. 35(2), pages 1033-1039.
    8. Li, You-Rong & Wang, Jian-Ning & Du, Mei-Tang, 2012. "Influence of coupled pinch point temperature difference and evaporation temperature on performance of organic Rankine cycle," Energy, Elsevier, vol. 42(1), pages 503-509.
    9. Manente, Giovanni & Toffolo, Andrea & Lazzaretto, Andrea & Paci, Marco, 2013. "An Organic Rankine Cycle off-design model for the search of the optimal control strategy," Energy, Elsevier, vol. 58(C), pages 97-106.
    10. Yousefzadeh, Moslem & Uzgoren, Eray, 2015. "Mass-conserving dynamic organic Rankine cycle model to investigate the link between mass distribution and system state," Energy, Elsevier, vol. 93(P1), pages 1128-1139.
    11. Quoilin, Sylvain & Lemort, Vincent & Lebrun, Jean, 2010. "Experimental study and modeling of an Organic Rankine Cycle using scroll expander," Applied Energy, Elsevier, vol. 87(4), pages 1260-1268, April.
    12. Xie, Hui & Yang, Can, 2013. "Dynamic behavior of Rankine cycle system for waste heat recovery of heavy duty diesel engines under driving cycle," Applied Energy, Elsevier, vol. 112(C), pages 130-141.
    13. Quoilin, Sylvain & Aumann, Richard & Grill, Andreas & Schuster, Andreas & Lemort, Vincent & Spliethoff, Hartmut, 2011. "Dynamic modeling and optimal control strategy of waste heat recovery Organic Rankine Cycles," Applied Energy, Elsevier, vol. 88(6), pages 2183-2190, June.
    14. Quoilin, Sylvain & Broek, Martijn Van Den & Declaye, Sébastien & Dewallef, Pierre & Lemort, Vincent, 2013. "Techno-economic survey of Organic Rankine Cycle (ORC) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 168-186.
    15. Horst, Tilmann Abbe & Rottengruber, Hermann-Sebastian & Seifert, Marco & Ringler, Jürgen, 2013. "Dynamic heat exchanger model for performance prediction and control system design of automotive waste heat recovery systems," Applied Energy, Elsevier, vol. 105(C), pages 293-303.
    16. Di Battista, D. & Mauriello, M. & Cipollone, R., 2015. "Waste heat recovery of an ORC-based power unit in a turbocharged diesel engine propelling a light duty vehicle," Applied Energy, Elsevier, vol. 152(C), pages 109-120.
    17. Milián, V. & Navarro-Esbrí, J. & Ginestar, D. & Molés, F. & Peris, B., 2013. "Dynamic model of a shell-and-tube condenser. Analysis of the mean void fraction correlation influence on the model performance," Energy, Elsevier, vol. 59(C), pages 521-533.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinxing Lin & Chonghui Chen & Aofang Yu & Likun Yin & Wen Su, 2021. "Performance Comparison of Advanced Transcritical Power Cycles with High-Temperature Working Fluids for the Engine Waste Heat Recovery," Energies, MDPI, vol. 14(18), pages 1-32, September.
    2. Shi, Yao & Lin, Runze & Wu, Xialai & Zhang, Zhiming & Sun, Pei & Xie, Lei & Su, Hongye, 2022. "Dual-mode fast DMC algorithm for the control of ORC based waste heat recovery system," Energy, Elsevier, vol. 244(PA).
    3. Wang, Xuan & Wang, Rui & Jin, Ming & Shu, Gequn & Tian, Hua & Pan, Jiaying, 2020. "Control of superheat of organic Rankine cycle under transient heat source based on deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    4. Guzović, Zvonimir & Kastrapeli, Simun & Budanko, Marina & Klun, Mario & Rašković, Predrag, 2024. "Improving the thermodynamic efficiency and turboexpander design in bottoming organic Rankine cycles: The impact of working fluid selection," Energy, Elsevier, vol. 307(C).
    5. Lingfeng Shi & Gequn Shu & Hua Tian & Guangdai Huang & Liwen Chang & Tianyu Chen & Xiaoya Li, 2017. "Ideal Point Design and Operation of CO 2 -Based Transcritical Rankine Cycle (CTRC) System Based on High Utilization of Engine’s Waste Heats," Energies, MDPI, vol. 10(11), pages 1-21, October.
    6. Wu, Xialai & Chen, Junghui & Xie, Lei, 2018. "Integrated operation design and control of Organic Rankine Cycle systems with disturbances," Energy, Elsevier, vol. 163(C), pages 115-129.
    7. Alberto Benato & Alarico Macor, 2017. "Biogas Engine Waste Heat Recovery Using Organic Rankine Cycle," Energies, MDPI, vol. 10(3), pages 1-18, March.
    8. Chen, Ruihua & Deng, Shuai & Zhao, Li & Zhao, Ruikai & Xu, Weicong, 2022. "Energy recovery from wastewater in deep-sea mining: Feasibility study on an energy supply solution with cold wastewater," Applied Energy, Elsevier, vol. 305(C).
    9. Lisa Branchini & Andrea De Pascale & Francesco Melino & Noemi Torricelli, 2020. "Optimum Organic Rankine Cycle Design for the Application in a CHP Unit Feeding a District Heating Network," Energies, MDPI, vol. 13(6), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    2. Zhai, Huixing & An, Qingsong & Shi, Lin & Lemort, Vincent & Quoilin, Sylvain, 2016. "Categorization and analysis of heat sources for organic Rankine cycle systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 790-805.
    3. Imran, Muhammad & Pili, Roberto & Usman, Muhammad & Haglind, Fredrik, 2020. "Dynamic modeling and control strategies of organic Rankine cycle systems: Methods and challenges," Applied Energy, Elsevier, vol. 276(C).
    4. Xu, Bin & Rathod, Dhruvang & Yebi, Adamu & Filipi, Zoran & Onori, Simona & Hoffman, Mark, 2019. "A comprehensive review of organic rankine cycle waste heat recovery systems in heavy-duty diesel engine applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 145-170.
    5. Huster, Wolfgang R. & Vaupel, Yannic & Mhamdi, Adel & Mitsos, Alexander, 2018. "Validated dynamic model of an organic Rankine cycle (ORC) for waste heat recovery in a diesel truck," Energy, Elsevier, vol. 151(C), pages 647-661.
    6. Ni, Jiaxin & Zhao, Li & Zhang, Zhengtao & Zhang, Ying & Zhang, Jianyuan & Deng, Shuai & Ma, Minglu, 2018. "Dynamic performance investigation of organic Rankine cycle driven by solar energy under cloudy condition," Energy, Elsevier, vol. 147(C), pages 122-141.
    7. Wang, Xuan & Shu, Gequn & Tian, Hua & Liu, Peng & Jing, Dongzhan & Li, Xiaoya, 2018. "The effects of design parameters on the dynamic behavior of organic ranking cycle for the engine waste heat recovery," Energy, Elsevier, vol. 147(C), pages 440-450.
    8. Rech, Sergio & Zandarin, Simone & Lazzaretto, Andrea & Frangopoulos, Christos A., 2017. "Design and off-design models of single and two-stage ORC systems on board a LNG carrier for the search of the optimal performance and control strategy," Applied Energy, Elsevier, vol. 204(C), pages 221-241.
    9. Cheng, Ziyang & Wang, Jiangfeng & Yang, Peijun & Wang, Yaxiong & Chen, Gang & Zhao, Pan & Dai, Yiping, 2022. "Comparison of control strategies and dynamic behaviour analysis of a Kalina cycle driven by a low-grade heat source," Energy, Elsevier, vol. 242(C).
    10. Ziviani, Davide & Beyene, Asfaw & Venturini, Mauro, 2014. "Advances and challenges in ORC systems modeling for low grade thermal energy recovery," Applied Energy, Elsevier, vol. 121(C), pages 79-95.
    11. Lin, Shan & Zhao, Li & Deng, Shuai & Ni, Jiaxin & Zhang, Ying & Ma, Minglu, 2019. "Dynamic performance investigation for two types of ORC system driven by waste heat of automotive internal combustion engine," Energy, Elsevier, vol. 169(C), pages 958-971.
    12. Shi, Rongqi & He, Tianqi & Peng, Jie & Zhang, Yangjun & Zhuge, Weilin, 2016. "System design and control for waste heat recovery of automotive engines based on Organic Rankine Cycle," Energy, Elsevier, vol. 102(C), pages 276-286.
    13. Mazzi, N. & Rech, S. & Lazzaretto, A., 2015. "Off-design dynamic model of a real Organic Rankine Cycle system fuelled by exhaust gases from industrial processes," Energy, Elsevier, vol. 90(P1), pages 537-551.
    14. Fuhaid Alshammari & Apostolos Karvountzis-Kontakiotis & Apostolos Pesyridis & Muhammad Usman, 2018. "Expander Technologies for Automotive Engine Organic Rankine Cycle Applications," Energies, MDPI, vol. 11(7), pages 1-36, July.
    15. Zhou, Feng & Joshi, Shailesh N. & Rhote-Vaney, Raphael & Dede, Ercan M., 2017. "A review and future application of Rankine Cycle to passenger vehicles for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1008-1021.
    16. Roberto Pili & Hartmut Spliethoff & Christoph Wieland, 2017. "Dynamic Simulation of an Organic Rankine Cycle—Detailed Model of a Kettle Boiler," Energies, MDPI, vol. 10(4), pages 1-28, April.
    17. Larsen, Ulrik & Pierobon, Leonardo & Baldi, Francesco & Haglind, Fredrik & Ivarsson, Anders, 2015. "Development of a model for the prediction of the fuel consumption and nitrogen oxides emission trade-off for large ships," Energy, Elsevier, vol. 80(C), pages 545-555.
    18. Lecompte, Steven & Huisseune, Henk & van den Broek, Martijn & Vanslambrouck, Bruno & De Paepe, Michel, 2015. "Review of organic Rankine cycle (ORC) architectures for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 448-461.
    19. Chintala, Venkateswarlu & Kumar, Suresh & Pandey, Jitendra K., 2018. "A technical review on waste heat recovery from compression ignition engines using organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 493-509.
    20. Fabio Fatigati & Marco Di Bartolomeo & Davide Di Battista & Roberto Cipollone, 2019. "Experimental and Numerical Characterization of the Sliding Rotary Vane Expander Intake Pressure in Order to Develop a Novel Control-Diagnostic Procedure," Energies, MDPI, vol. 12(10), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:7:p:527-:d:73702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.