IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v113y2016icp1241-1249.html
   My bibliography  Save this article

Assessment of spinel-type mixed valence Cu/Co and Ni/Co-based oxides for power production in single-chamber microbial fuel cells

Author

Listed:
  • Ortiz-Martínez, V.M.
  • Salar-García, M.J.
  • Touati, K.
  • Hernández-Fernández, F.J.
  • de los Ríos, A.P.
  • Belhoucine, F.
  • Berrabbah, A. Alioua

Abstract

Microbial Fuel Cell (MFC) is one of the most promising technologies for bioenergy production from wastewater. The improvement of MFC efficiency requires the replacement of noble catalysts for the cathode reaction by low-cost and effective materials. Thus, this work aims at studying the use of transition spinel metal-based oxides as potential cathode catalysts in these devices. Several spinel cobalt-based oxides doped with copper and nickel were synthesized by thermal decomposition at different Cu:Co and Ni:Co atomic ratios and assessed mainly in terms of power performance and chemical oxygen removal (COD) in single-chamber MFCs. The particle size and chemical composition of these catalysts were characterized by TEM and XRD analyses prior to MFC set-up. Among the compounds tested, the nanostructured copper-doped cobalt oxide with chemical formula (Cu0.30Co0.70)Co2O4 offered the highest maximum power output of 567.58 mW m−2, which accounts for over 87% of the total power generated by Pt-sprayed cathodes. Cu0.72Co2.28O4 also reached a significant power density of 354.92 mW m−2. Spinel oxide-based MFCs achieved COD removal values of approximately 56% after 240 h of operation. Finally, this work compares the performance of the spinel oxides investigated with other transition metal based catalysts reported in the literature.

Suggested Citation

  • Ortiz-Martínez, V.M. & Salar-García, M.J. & Touati, K. & Hernández-Fernández, F.J. & de los Ríos, A.P. & Belhoucine, F. & Berrabbah, A. Alioua, 2016. "Assessment of spinel-type mixed valence Cu/Co and Ni/Co-based oxides for power production in single-chamber microbial fuel cells," Energy, Elsevier, vol. 113(C), pages 1241-1249.
  • Handle: RePEc:eee:energy:v:113:y:2016:i:c:p:1241-1249
    DOI: 10.1016/j.energy.2016.07.127
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216310532
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.07.127?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Yingwen & Xu, Yuan & Chen, Liuliu & Li, Peiwen & Zhu, Shemin & Shen, Shubao, 2015. "Microbial electrolysis cells with polyaniline/multi-walled carbon nanotube-modified biocathodes," Energy, Elsevier, vol. 88(C), pages 377-384.
    2. Ayyaru, Sivasankaran & Dharmalingam, Sangeetha, 2015. "A study of influence on nanocomposite membrane of sulfonated TiO2 and sulfonated polystyrene-ethylene-butylene-polystyrene for microbial fuel cell application," Energy, Elsevier, vol. 88(C), pages 202-208.
    3. Chen, Yingwen & Chen, Liuliu & Li, Peiwen & Xu, Yuan & Fan, Mengjie & Zhu, Shemin & Shen, Shubao, 2016. "Enhanced performance of microbial fuel cells by using MnO2/Halloysite nanotubes to modify carbon cloth anodes," Energy, Elsevier, vol. 109(C), pages 620-628.
    4. Oliveira, V.B. & Simões, M. & Melo, L.F. & Pinto, A.M.F.R., 2013. "A 1D mathematical model for a microbial fuel cell," Energy, Elsevier, vol. 61(C), pages 463-471.
    5. Hidalgo, Diana & Tommasi, Tonia & Bocchini, Sergio & Chiolerio, Alessandro & Chiodoni, Angelica & Mazzarino, Italo & Ruggeri, Bernardo, 2016. "Surface modification of commercial carbon felt used as anode for Microbial Fuel Cells," Energy, Elsevier, vol. 99(C), pages 193-201.
    6. Salar-García, M.J. & Ortiz-Martínez, V.M. & Baicha, Z. & de los Ríos, A.P. & Hernández-Fernández, F.J., 2016. "Scaled-up continuous up-flow microbial fuel cell based on novel embedded ionic liquid-type membrane-cathode assembly," Energy, Elsevier, vol. 101(C), pages 113-120.
    7. Lay, Chyi-How & Kokko, Marika E. & Puhakka, Jaakko A., 2015. "Power generation in fed-batch and continuous up-flow microbial fuel cell from synthetic wastewater," Energy, Elsevier, vol. 91(C), pages 235-241.
    8. Kadier, Abudukeremu & Abdeshahian, Peyman & Simayi, Yibadatihan & Ismail, Manal & Hamid, Aidil Abdul & Kalil, Mohd Sahaid, 2015. "Grey relational analysis for comparative assessment of different cathode materials in microbial electrolysis cells," Energy, Elsevier, vol. 90(P2), pages 1556-1562.
    9. Salar-García, M.J. & Ortiz-Martínez, V.M. & de los Ríos, A.P. & Hernández-Fernández, F.J., 2015. "A method based on impedance spectroscopy for predicting the behavior of novel ionic liquid-polymer inclusion membranes in microbial fuel cells," Energy, Elsevier, vol. 89(C), pages 648-654.
    10. Chun Li & Xiaopeng Han & Fangyi Cheng & Yuxiang Hu & Chengcheng Chen & Jun Chen, 2015. "Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    11. Schilirò, T. & Tommasi, T. & Armato, C. & Hidalgo, D. & Traversi, D. & Bocchini, S. & Gilli, G. & Pirri, C.F., 2016. "The study of electrochemically active planktonic microbes in microbial fuel cells in relation to different carbon-based anode materials," Energy, Elsevier, vol. 106(C), pages 277-284.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adrián Hernández-Fernández & Eduardo Iniesta-López & Yolanda Garrido & Ioannis A. Ieropoulos & Francisco J. Hernández-Fernández, 2023. "Microbial Fuel Cell Using a Novel Ionic-Liquid-Type Membrane-Cathode Assembly with Heterotrophic Anodic Denitrification for Slurry Treatment," Sustainability, MDPI, vol. 15(20), pages 1-18, October.
    2. Xin, Shuaishuai & Shen, Jianguo & Liu, Guocheng & Chen, Qinghua & Xiao, Zhou & Zhang, Guodong & Xin, Yanjun, 2020. "High electricity generation and COD removal from cattle wastewater in microbial fuel cells with 3D air cathode employed non-precious Cu2O/reduced graphene oxide as cathode catalyst," Energy, Elsevier, vol. 196(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ortiz-Martínez, V.M. & Salar-García, M.J. & Hernández-Fernández, F.J. & de los Ríos, A.P., 2015. "Development and characterization of a new embedded ionic liquid based membrane-cathode assembly for its application in single chamber microbial fuel cells," Energy, Elsevier, vol. 93(P2), pages 1748-1757.
    2. Sekar, Aiswarya Devi & Jayabalan, Tamilmani & Muthukumar, Harshiny & Chandrasekaran, Nivedhini Iswarya & Mohamed, Samsudeen Naina & Matheswaran, Manickam, 2019. "Enhancing power generation and treatment of dairy waste water in microbial fuel cell using Cu-doped iron oxide nanoparticles decorated anode," Energy, Elsevier, vol. 172(C), pages 173-180.
    3. Shahid, Kanwal & Ramasamy, Deepika Lakshmi & Haapasaari, Sampo & Sillanpää, Mika & Pihlajamäki, Arto, 2021. "Stainless steel and carbon brushes as high-performance anodes for energy production and nutrient recovery using the microbial nutrient recovery system," Energy, Elsevier, vol. 233(C).
    4. Zinadini, S. & Zinatizadeh, A.A. & Rahimi, M. & Vatanpour, V. & Bahrami, K., 2017. "Energy recovery and hygienic water production from wastewater using an innovative integrated microbial fuel cell–membrane separation process," Energy, Elsevier, vol. 141(C), pages 1350-1362.
    5. Kadier, Abudukeremu & Kalil, Mohd Sahaid & Abdeshahian, Peyman & Chandrasekhar, K. & Mohamed, Azah & Azman, Nadia Farhana & Logroño, Washington & Simayi, Yibadatihan & Hamid, Aidil Abdul, 2016. "Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 501-525.
    6. Hassan, Sedky H.A. & el Nasser A. Zohri, Abd & Kassim, Rehab M.F., 2019. "Electricity generation from sugarcane molasses using microbial fuel cell technologies," Energy, Elsevier, vol. 178(C), pages 538-543.
    7. Wang, Yuyang & Chen, Ye & Wen, Qing & Zheng, Hongtao & Xu, Haitao & Qi, Lijuan, 2019. "Electricity generation, energy storage, and microbial-community analysis in microbial fuel cells with multilayer capacitive anodes," Energy, Elsevier, vol. 189(C).
    8. Jadhav, Dipak A. & Jain, Sumat C. & Ghangrekar, Makarand M., 2016. "Cow's urine as a yellow gold for bioelectricity generation in low cost clayware microbial fuel cell," Energy, Elsevier, vol. 113(C), pages 76-84.
    9. Salar-García, M.J. & Ortiz-Martínez, V.M. & Baicha, Z. & de los Ríos, A.P. & Hernández-Fernández, F.J., 2016. "Scaled-up continuous up-flow microbial fuel cell based on novel embedded ionic liquid-type membrane-cathode assembly," Energy, Elsevier, vol. 101(C), pages 113-120.
    10. Wang, Yuyang & Wang, Zhijie & Hu, Guangxu, 2023. "Bifunctional polypyrrole/ferroferric oxide as anode material for enhanced electricity generation and energy storage in microbial fuel cell," Renewable Energy, Elsevier, vol. 219(P1).
    11. Gao, Ningshengjie & Qu, Botong & Xing, Zhenyu & Ji, Xiulei & Zhang, Eugene & Liu, Hong, 2018. "Development of novel polyethylene air-cathode material for microbial fuel cells," Energy, Elsevier, vol. 155(C), pages 763-771.
    12. Parnian, Mohammad Javad & Rowshanzamir, Soosan & Gashoul, Fatemeh, 2017. "Comprehensive investigation of physicochemical and electrochemical properties of sulfonated poly (ether ether ketone) membranes with different degrees of sulfonation for proton exchange membrane fuel ," Energy, Elsevier, vol. 125(C), pages 614-628.
    13. Zhang, Zumeng & Ding, Liping & Wang, Chaofan & Dai, Qiyao & Shi, Yin & Zhao, Yujia & Zhu, Yuxuan, 2022. "Do operation and maintenance contracts help photovoltaic poverty alleviation power stations perform better?," Energy, Elsevier, vol. 259(C).
    14. Theofilos Kamperidis & Asimina Tremouli & Antonis Peppas & Gerasimos Lyberatos, 2022. "A 2D Modelling Approach for Predicting the Response of a Two-Chamber Microbial Fuel Cell to Substrate Concentration and Electrolyte Conductivity Changes," Energies, MDPI, vol. 15(4), pages 1-15, February.
    15. Tang, Raymond Chong Ong & Jang, Jer-Huan & Lan, Tzu-Hsuan & Wu, Jung-Chen & Yan, Wei-Mon & Sangeetha, Thangavel & Wang, Chin-Tsan & Ong, Hwai Chyuan & Ong, Zhi Chao, 2020. "Review on design factors of microbial fuel cells using Buckingham's Pi Theorem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    16. Kumar, Aman & Singh, Ekta & Mishra, Rahul & Lo, Shang Lien & Kumar, Sunil, 2023. "Global trends in municipal solid waste treatment technologies through the lens of sustainable energy development opportunity," Energy, Elsevier, vol. 275(C).
    17. Fang, Shuo & Zhang, Yufeng & Zou, Yuezhang & Sang, Shengtian & Liu, Xiaowei, 2017. "Structural design and analysis of a passive DMFC supplied with concentrated methanol solution," Energy, Elsevier, vol. 128(C), pages 50-61.
    18. Fang, Shuo & Zhang, Yufeng & Ma, Zezhong & Sang, Shengtian & Liu, Xiaowei, 2016. "Systemic modeling and analysis of DMFC stack for behavior prediction in system-level application," Energy, Elsevier, vol. 112(C), pages 1015-1023.
    19. Sona Kazemi & Melissa Barazandegan & Madjid Mohseni & Khalid Fatih, 2016. "Systematic Study of Separators in Air-Breathing Flat-Plate Microbial Fuel Cells—Part 2: Numerical Modeling," Energies, MDPI, vol. 9(2), pages 1-16, January.
    20. Hidalgo, Diana & Tommasi, Tonia & Cauda, Valentina & Porro, Samuele & Chiodoni, Angelica & Bejtka, Katarzyna & Ruggeri, Bernardo, 2014. "Streamlining of commercial Berl saddles: A new material to improve the performance of microbial fuel cells," Energy, Elsevier, vol. 71(C), pages 615-623.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:113:y:2016:i:c:p:1241-1249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.