Bifunctional polypyrrole/ferroferric oxide as anode material for enhanced electricity generation and energy storage in microbial fuel cell
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2023.119432
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Liang, Peng & Zhang, Changyong & Jiang, Yong & Bian, Yanhong & Zhang, Helan & Sun, Xueliang & Yang, Xufei & Zhang, Xiaoyuan & Huang, Xia, 2017. "Performance enhancement of microbial fuel cell by applying transient-state regulation," Applied Energy, Elsevier, vol. 185(P1), pages 582-588.
- Chen, Yingwen & Chen, Liuliu & Li, Peiwen & Xu, Yuan & Fan, Mengjie & Zhu, Shemin & Shen, Shubao, 2016. "Enhanced performance of microbial fuel cells by using MnO2/Halloysite nanotubes to modify carbon cloth anodes," Energy, Elsevier, vol. 109(C), pages 620-628.
- Hidalgo, Diana & Tommasi, Tonia & Bocchini, Sergio & Chiolerio, Alessandro & Chiodoni, Angelica & Mazzarino, Italo & Ruggeri, Bernardo, 2016. "Surface modification of commercial carbon felt used as anode for Microbial Fuel Cells," Energy, Elsevier, vol. 99(C), pages 193-201.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ortiz-Martínez, V.M. & Salar-García, M.J. & Touati, K. & Hernández-Fernández, F.J. & de los Ríos, A.P. & Belhoucine, F. & Berrabbah, A. Alioua, 2016. "Assessment of spinel-type mixed valence Cu/Co and Ni/Co-based oxides for power production in single-chamber microbial fuel cells," Energy, Elsevier, vol. 113(C), pages 1241-1249.
- Christwardana, Marcelinus & Frattini, Domenico & Accardo, Grazia & Yoon, Sung Pil & Kwon, Yongchai, 2018. "Early-stage performance evaluation of flowing microbial fuel cells using chemically treated carbon felt and yeast biocatalyst," Applied Energy, Elsevier, vol. 222(C), pages 369-382.
- Wang, Yuyang & Wen, Qing & Chen, Ye & Zheng, Hongtao & Wang, Shuang, 2020. "Enhanced performance of microbial fuel cell with polyaniline/sodium alginate/carbon brush hydrogel bioanode and removal of COD," Energy, Elsevier, vol. 202(C).
- Sekar, Aiswarya Devi & Jayabalan, Tamilmani & Muthukumar, Harshiny & Chandrasekaran, Nivedhini Iswarya & Mohamed, Samsudeen Naina & Matheswaran, Manickam, 2019. "Enhancing power generation and treatment of dairy waste water in microbial fuel cell using Cu-doped iron oxide nanoparticles decorated anode," Energy, Elsevier, vol. 172(C), pages 173-180.
- Wang, Yuyang & Chen, Ye & Wen, Qing & Zheng, Hongtao & Xu, Haitao & Qi, Lijuan, 2019. "Electricity generation, energy storage, and microbial-community analysis in microbial fuel cells with multilayer capacitive anodes," Energy, Elsevier, vol. 189(C).
- Wang, Yuyang & Wen, Qing & Chen, Ye & Li, Wei, 2020. "Conductive polypyrrole-carboxymethyl cellulose-titanium nitride/carbon brush hydrogels as bioanodes for enhanced energy output in microbial fuel cells," Energy, Elsevier, vol. 204(C).
- Caizán-Juanarena, Leire & Sleutels, Tom & Borsje, Casper & ter Heijne, Annemiek, 2020. "Considerations for application of granular activated carbon as capacitive bioanode in bioelectrochemical systems," Renewable Energy, Elsevier, vol. 157(C), pages 782-792.
- Shahid, Kanwal & Ramasamy, Deepika Lakshmi & Haapasaari, Sampo & Sillanpää, Mika & Pihlajamäki, Arto, 2021. "Stainless steel and carbon brushes as high-performance anodes for energy production and nutrient recovery using the microbial nutrient recovery system," Energy, Elsevier, vol. 233(C).
- Sayed, Enas Taha & Abdelkareem, Mohammad Ali & Alawadhi, Hussain & Elsaid, Khaled & Wilberforce, Tabbi & Olabi, A.G., 2021. "Graphitic carbon nitride/carbon brush composite as a novel anode for yeast-based microbial fuel cells," Energy, Elsevier, vol. 221(C).
- Schilirò, T. & Tommasi, T. & Armato, C. & Hidalgo, D. & Traversi, D. & Bocchini, S. & Gilli, G. & Pirri, C.F., 2016. "The study of electrochemically active planktonic microbes in microbial fuel cells in relation to different carbon-based anode materials," Energy, Elsevier, vol. 106(C), pages 277-284.
- Liu, Panpan & Liang, Peng & Jiang, Yong & Hao, Wen & Miao, Bo & Wang, Donglin & Huang, Xia, 2018. "Stimulated electron transfer inside electroactive biofilm by magnetite for increased performance microbial fuel cell," Applied Energy, Elsevier, vol. 216(C), pages 382-388.
- Christwardana, Marcelinus & Frattini, Domenico & Duarte, Kimberley D.Z. & Accardo, Grazia & Kwon, Yongchai, 2019. "Carbon felt molecular modification and biofilm augmentation via quorum sensing approach in yeast-based microbial fuel cells," Applied Energy, Elsevier, vol. 238(C), pages 239-248.
- Frattini, Domenico & Accardo, Grazia & Duarte, Kimberley D.Z. & Kim, Do-Heyoung & Kwon, Yongchai, 2020. "Improved biofilm adhesion and electrochemical properties of a graphite-cement composite with silica nanoflowers versus two benchmark carbon felts," Applied Energy, Elsevier, vol. 261(C).
- Wang, Yuyang & Zhu, Lin & An, Lijuan, 2020. "Electricity generation and storage in microbial fuel cells with porous polypyrrole-base composite modified carbon brush anodes," Renewable Energy, Elsevier, vol. 162(C), pages 2220-2226.
- Xu, Lei & Wang, Bodi & Liu, Xiuhua & Yu, Wenzheng & Zhao, Yaqian, 2018. "Maximizing the energy harvest from a microbial fuel cell embedded in a constructed wetland," Applied Energy, Elsevier, vol. 214(C), pages 83-91.
- Duarte, Kimberley D.Z. & Frattini, Domenico & Kwon, Yongchai, 2019. "High performance yeast-based microbial fuel cells by surfactant-mediated gold nanoparticles grown atop a carbon felt anode," Applied Energy, Elsevier, vol. 256(C).
- Enas Taha Sayed & Hussain Alawadhi & Khaled Elsaid & A. G. Olabi & Maryam Adel Almakrani & Shaikha Tamim Bin Tamim & Ghada H. M. Alafranji & Mohammad Ali Abdelkareem, 2020. "A Carbon-Cloth Anode Electroplated with Iron Nanostructure for Microbial Fuel Cell Operated with Real Wastewater," Sustainability, MDPI, vol. 12(16), pages 1-11, August.
- Chen, Bor-Yann & Liao, Jia-Hui & Hsueh, Chung-Chuan & Qu, Ziwei & Hsu, An-Wei & Chang, Chang-Tang & Zhang, Shuping, 2018. "Deciphering biostimulation strategy of using medicinal herbs and tea extracts for bioelectricity generation in microbial fuel cells," Energy, Elsevier, vol. 161(C), pages 1042-1054.
- Zinadini, S. & Zinatizadeh, A.A. & Rahimi, M. & Vatanpour, V. & Bahrami, K., 2017. "Energy recovery and hygienic water production from wastewater using an innovative integrated microbial fuel cell–membrane separation process," Energy, Elsevier, vol. 141(C), pages 1350-1362.
More about this item
Keywords
Bifunctional bioanode; Polypyrrole/ferroferric oxide; Green energy;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:219:y:2023:i:p1:s0960148123013472. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.