IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v61y2016icp501-525.html
   My bibliography  Save this article

Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals

Author

Listed:
  • Kadier, Abudukeremu
  • Kalil, Mohd Sahaid
  • Abdeshahian, Peyman
  • Chandrasekhar, K.
  • Mohamed, Azah
  • Azman, Nadia Farhana
  • Logroño, Washington
  • Simayi, Yibadatihan
  • Hamid, Aidil Abdul

Abstract

Microbial electrolysis cell (MEC) is a potentially attractive green technology to tackle the global warming and energy crisis, which employs electrochemically active bacteria to convert organic matter into hydrogen or a wide range of chemicals, such as methane, acetate, hydrogen peroxide, ethanol, and formic acid, without causing environmental pollution. Until now, probably the cleanest and the most efficient method of producing hydrogen has been MEC. However, this technology is still in its infancy period and poses various challenges towards up-scaling and widespread applications, such as such as lower hydrogen production rate (HPR), high internal resistance, complicated architecture, and expensive materials. New advances are needed in biofilm engineering, materials for electrodes and reactor configuration for successful real-world application of this technology. Thus, the present review deals with development of practical MEC technology and includes the following sections: firstly a general introduction to MECs; their operating principles, thermodynamics of MEC, and energy or voltage losses in the MEC system were provided. Followed by a section on the critical factors affecting MEC performance; microorganisms, anode, cathode, membrane or separator, fuel sources, the state-of-art MECs designs, other key operational factors, and its potential application in microbial production of value added products are discussed in detail. Afterwards, current challenges involved in developing practical MEC systems are highlighted, and outlooks for future development are also suggested. The review aims to assist researcher and engineers to gain fundamental understandings of MEC, and it also provides several future research directions and a road map on how to overcome the barriers, so the MEC technology can be further advanced and applied in larger scale.

Suggested Citation

  • Kadier, Abudukeremu & Kalil, Mohd Sahaid & Abdeshahian, Peyman & Chandrasekhar, K. & Mohamed, Azah & Azman, Nadia Farhana & Logroño, Washington & Simayi, Yibadatihan & Hamid, Aidil Abdul, 2016. "Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 501-525.
  • Handle: RePEc:eee:rensus:v:61:y:2016:i:c:p:501-525
    DOI: 10.1016/j.rser.2016.04.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211630034X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.04.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kotarska, Katarzyna & Świerczyńska, Anna & Dziemianowicz, Wojciech, 2015. "Study on the decomposition of lignocellulosic biomass and subjecting it to alcoholic fermentation," Renewable Energy, Elsevier, vol. 75(C), pages 389-394.
    2. Azwar, M.Y. & Hussain, M.A. & Abdul-Wahab, A.K., 2014. "Development of biohydrogen production by photobiological, fermentation and electrochemical processes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 158-173.
    3. Amponsah, Nana Yaw & Troldborg, Mads & Kington, Bethany & Aalders, Inge & Hough, Rupert Lloyd, 2014. "Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 461-475.
    4. Cai, Junmeng & Wu, Weixuan & Liu, Ronghou, 2014. "An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 236-246.
    5. Chen, Yingwen & Xu, Yuan & Chen, Liuliu & Li, Peiwen & Zhu, Shemin & Shen, Shubao, 2015. "Microbial electrolysis cells with polyaniline/multi-walled carbon nanotube-modified biocathodes," Energy, Elsevier, vol. 88(C), pages 377-384.
    6. Gemma Reguera & Kevin D. McCarthy & Teena Mehta & Julie S. Nicoll & Mark T. Tuominen & Derek R. Lovley, 2005. "Extracellular electron transfer via microbial nanowires," Nature, Nature, vol. 435(7045), pages 1098-1101, June.
    7. W. J.W. Botzen & J. M. Gowdy & J. C.J.M. Van Den Bergh, 2008. "Cumulative CO 2 emissions: shifting international responsibilities for climate debt," Climate Policy, Taylor & Francis Journals, vol. 8(6), pages 569-576, November.
    8. Kadier, Abudukeremu & Simayi, Yibadatihan & Kalil, Mohd Sahaid & Abdeshahian, Peyman & Hamid, Aidil Abdul, 2014. "A review of the substrates used in microbial electrolysis cells (MECs) for producing sustainable and clean hydrogen gas," Renewable Energy, Elsevier, vol. 71(C), pages 466-472.
    9. Kadier, Abudukeremu & Abdeshahian, Peyman & Simayi, Yibadatihan & Ismail, Manal & Hamid, Aidil Abdul & Kalil, Mohd Sahaid, 2015. "Grey relational analysis for comparative assessment of different cathode materials in microbial electrolysis cells," Energy, Elsevier, vol. 90(P2), pages 1556-1562.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Devi Radhika & Archana Shivakumar & Deepak R. Kasai & Ravindranadh Koutavarapu & Shaik Gouse Peera, 2022. "Microbial Electrolysis Cell as a Diverse Technology: Overview of Prospective Applications, Advancements, and Challenges," Energies, MDPI, vol. 15(7), pages 1-19, April.
    2. Park, Lydia Kyoung-Eun & Satinover, Scott J. & Yiacoumi, Sotira & Mayes, Richard T. & Borole, Abhijeet P. & Tsouris, Costas, 2018. "Electrosorption of organic acids from aqueous bio-oil and conversion into hydrogen via microbial electrolysis cells," Renewable Energy, Elsevier, vol. 125(C), pages 21-31.
    3. Kumar, Aman & Singh, Ekta & Mishra, Rahul & Lo, Shang Lien & Kumar, Sunil, 2023. "Global trends in municipal solid waste treatment technologies through the lens of sustainable energy development opportunity," Energy, Elsevier, vol. 275(C).
    4. Kokko, M. & Bayerköhler, F. & Erben, J. & Zengerle, R. & Kurz, Ph. & Kerzenmacher, S., 2017. "Molybdenum sulphides on carbon supports as electrocatalysts for hydrogen evolution in acidic industrial wastewater," Applied Energy, Elsevier, vol. 190(C), pages 1221-1233.
    5. Takaya Ogawa & Mizutomo Takeuchi & Yuya Kajikawa, 2018. "Analysis of Trends and Emerging Technologies in Water Electrolysis Research Based on a Computational Method: A Comparison with Fuel Cell Research," Sustainability, MDPI, vol. 10(2), pages 1-24, February.
    6. A K M Khabirul Islam & Patrick S. M. Dunlop & Neil J. Hewitt & Rose Lenihan & Caterina Brandoni, 2021. "Bio-Hydrogen Production from Wastewater: A Comparative Study of Low Energy Intensive Production Processes," Clean Technol., MDPI, vol. 3(1), pages 1-27, February.
    7. Parkhey, Piyush & Gupta, Pratima, 2017. "Improvisations in structural features of microbial electrolytic cell and process parameters of electrohydrogenesis for efficient biohydrogen production: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1085-1099.
    8. Khan, Mohd Atiqueuzzaman & Ngo, Huu Hao & Guo, Wenshan & Liu, Yiwen & Zhang, Xinbo & Guo, Jianbo & Chang, Soon Woong & Nguyen, Dinh Duc & Wang, Jie, 2018. "Biohydrogen production from anaerobic digestion and its potential as renewable energy," Renewable Energy, Elsevier, vol. 129(PB), pages 754-768.
    9. Donato Cecere & Eugenio Giacomazzi & Antonio Di Nardo & Giorgio Calchetti, 2023. "Gas Turbine Combustion Technologies for Hydrogen Blends," Energies, MDPI, vol. 16(19), pages 1-29, September.
    10. Jayabalan, Tamilmani & Manickam, Matheswaran & Naina Mohamed, Samsudeen, 2020. "NiCo2O4-graphene nanocomposites in sugar industry wastewater fed microbial electrolysis cell for enhanced biohydrogen production," Renewable Energy, Elsevier, vol. 154(C), pages 1144-1152.
    11. Yang, Wei & Bao, Jingjing & Liu, Hongtao & Zhang, Jun & Guo, Lin, 2023. "Low-grade heat to hydrogen: Current technologies, challenges and prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    12. Shen, Ruixia & Jiang, Yong & Ge, Zheng & Lu, Jianwen & Zhang, Yuanhui & Liu, Zhidan & Ren, Zhiyong Jason, 2018. "Microbial electrolysis treatment of post-hydrothermal liquefaction wastewater with hydrogen generation," Applied Energy, Elsevier, vol. 212(C), pages 509-515.
    13. Ndayisenga, Fabrice & Yu, Zhisheng & Zheng, Jianzhong & Wang, Bobo & Liang, Hongxia & Phulpoto, Irfan Ali & Habiyakare, Telesphore & Zhou, Dandan, 2021. "Microbial electrohydrogenesis cell and dark fermentation integrated system enhances biohydrogen production from lignocellulosic agricultural wastes: Substrate pretreatment towards optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    14. Jiang, Yong & Yang, Xufei & Liang, Peng & Liu, Panpan & Huang, Xia, 2018. "Microbial fuel cell sensors for water quality early warning systems: Fundamentals, signal resolution, optimization and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 292-305.
    15. Rousseau, Raphaël & Etcheverry, Luc & Roubaud, Emma & Basséguy, Régine & Délia, Marie-Line & Bergel, Alain, 2020. "Microbial electrolysis cell (MEC): Strengths, weaknesses and research needs from electrochemical engineering standpoint," Applied Energy, Elsevier, vol. 257(C).
    16. Littfinski, Tobias & Stricker, Max & Nettmann, Edith & Gehring, Tito & Hiegemann, Heinz & Krimmler, Stefan & Lübken, Manfred & Pant, Deepak & Wichern, Marc, 2022. "A generalized whole-cell model for wastewater-fed microbial fuel cells," Applied Energy, Elsevier, vol. 321(C).
    17. Prasun Kumar & Kuppam Chandrasekhar & Archana Kumari & Ezhaveni Sathiyamoorthi & Beom Soo Kim, 2018. "Electro-Fermentation in Aid of Bioenergy and Biopolymers," Energies, MDPI, vol. 11(2), pages 1-20, February.
    18. Kumar, Alok & Muthukumar, P., 2024. "Experimental investigation on hydrogen transfer in coupled metal hydride reactors for multistage hydrogen purification application," Applied Energy, Elsevier, vol. 363(C).
    19. Anusha Ganta & Yasser Bashir & Sovik Das, 2022. "Dairy Wastewater as a Potential Feedstock for Valuable Production with Concurrent Wastewater Treatment through Microbial Electrochemical Technologies," Energies, MDPI, vol. 15(23), pages 1-34, November.
    20. Leicester, Daniel & Amezaga, Jaime & Heidrich, Elizabeth, 2020. "Is bioelectrochemical energy production from wastewater a reality? Identifying and standardising the progress made in scaling up microbial electrolysis cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    21. Ding, Lingkan & Wang, Yuchuan & Lin, Hongjian & van Lierop, Leif & Hu, Bo, 2022. "Facilitating solid-state anaerobic digestion of food waste via bio-electrochemical treatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ortiz-Martínez, V.M. & Salar-García, M.J. & Touati, K. & Hernández-Fernández, F.J. & de los Ríos, A.P. & Belhoucine, F. & Berrabbah, A. Alioua, 2016. "Assessment of spinel-type mixed valence Cu/Co and Ni/Co-based oxides for power production in single-chamber microbial fuel cells," Energy, Elsevier, vol. 113(C), pages 1241-1249.
    2. Ndayisenga, Fabrice & Yu, Zhisheng & Zheng, Jianzhong & Wang, Bobo & Liang, Hongxia & Phulpoto, Irfan Ali & Habiyakare, Telesphore & Zhou, Dandan, 2021. "Microbial electrohydrogenesis cell and dark fermentation integrated system enhances biohydrogen production from lignocellulosic agricultural wastes: Substrate pretreatment towards optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Parkhey, Piyush & Gupta, Pratima, 2017. "Improvisations in structural features of microbial electrolytic cell and process parameters of electrohydrogenesis for efficient biohydrogen production: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1085-1099.
    4. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    5. Zhang, Zumeng & Ding, Liping & Wang, Chaofan & Dai, Qiyao & Shi, Yin & Zhao, Yujia & Zhu, Yuxuan, 2022. "Do operation and maintenance contracts help photovoltaic poverty alleviation power stations perform better?," Energy, Elsevier, vol. 259(C).
    6. Karlsson, Rasmus, 2012. "Carbon lock-in, rebound effects and China at the limits of statism," Energy Policy, Elsevier, vol. 51(C), pages 939-945.
    7. Liu, Yuanzhe & Lai, Yen-Jung Sean & Rittmann, Bruce E., 2020. "Increased anode respiration enhances utilization of short-chain fatty acid and lipid wet-extraction from Scenedesmus acutus biomass in electro-selective fermentation," Renewable Energy, Elsevier, vol. 148(C), pages 374-379.
    8. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    9. Rueda-Bayona, Juan Gabriel & Cabello Eras, Juan Jose & Chaparro, Tatiana R., 2022. "Impacts generated by the materials used in offshore wind technology on Human Health, Natural Environment and Resources," Energy, Elsevier, vol. 261(PA).
    10. Iosifov Valeriy Victorovich & Evgenii Yu. Khrustalev & Sergey N. Larin & Oleg E. Khrustalev, 2021. "The Linear Programming Problem of Regional Energy System Optimization," International Journal of Energy Economics and Policy, Econjournals, vol. 11(5), pages 281-288.
    11. Yannis Dafermos, 2022. "Climate change, central banking and financial supervision: beyond the risk exposure approach," Chapters, in: Sylvio Kappes & Louis-Philippe Rochon & Guillaume Vallet (ed.), The Future of Central Banking, chapter 8, pages 175-194, Edward Elgar Publishing.
    12. Shen, Liang & Zhao, Qingchuan & Wu, Xuee & Li, Xiangzhen & Li, Qingbiao & Wang, Yuanpeng, 2016. "Interspecies electron transfer in syntrophic methanogenic consortia: From cultures to bioreactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1358-1367.
    13. Ewelina Olba-Zięty & Mariusz Jerzy Stolarski & Michał Krzyżaniak, 2021. "Economic Evaluation of the Production of Perennial Crops for Energy Purposes—A Review," Energies, MDPI, vol. 14(21), pages 1-16, November.
    14. Paweł P. Włodarczyk & Barbara Włodarczyk, 2018. "Microbial Fuel Cell with Ni–Co Cathode Powered with Yeast Wastewater," Energies, MDPI, vol. 11(11), pages 1-9, November.
    15. Wang, Zixin & Wang, Tengfei & Si, Buchun & Watson, Jamison & Zhang, Yuanhui, 2021. "Accelerating anaerobic digestion for methane production: Potential role of direct interspecies electron transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    16. Chen, Jianbiao & Gao, Shuaifei & Xu, Fang & Xu, Wenhao & Yang, Yuanjiang & Kong, Depeng & Wang, Yinfeng & Yao, Huicong & Chen, Haijun & Zhu, Yuezhao & Mu, Lin, 2022. "Influence of moisture and feedstock form on the pyrolysis behaviors, pyrolytic gas production, and residues micro-structure evolutions of an industrial sludge from a steel production enterprise," Energy, Elsevier, vol. 248(C).
    17. Zhang, Wei & Valencia, Andrea & Gu, Lixing & Zheng, Qipeng P. & Chang, Ni-Bin, 2020. "Integrating emerging and existing renewable energy technologies into a community-scale microgrid in an energy-water nexus for resilience improvement," Applied Energy, Elsevier, vol. 279(C).
    18. Karunathilake, Hirushie & Hewage, Kasun & Mérida, Walter & Sadiq, Rehan, 2019. "Renewable energy selection for net-zero energy communities: Life cycle based decision making under uncertainty," Renewable Energy, Elsevier, vol. 130(C), pages 558-573.
    19. M. A. Parvez Mahmud & Nazmul Huda & Shahjadi Hisan Farjana & Candace Lang, 2018. "Environmental Impacts of Solar-Photovoltaic and Solar-Thermal Systems with Life-Cycle Assessment," Energies, MDPI, vol. 11(9), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:61:y:2016:i:c:p:501-525. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.