IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v109y2016icp620-628.html
   My bibliography  Save this article

Enhanced performance of microbial fuel cells by using MnO2/Halloysite nanotubes to modify carbon cloth anodes

Author

Listed:
  • Chen, Yingwen
  • Chen, Liuliu
  • Li, Peiwen
  • Xu, Yuan
  • Fan, Mengjie
  • Zhu, Shemin
  • Shen, Shubao

Abstract

The modification of anode materials is important to enhance the power generation of MFCs (microbial fuel cells). A novel and cost-effective modified anode that is fabricated by dispersing manganese dioxide (MnO2) and HNTs (Halloysite nanotubes) on carbon cloth to improve the MFCs' power production was reported. The results show that the MnO2/HNT anodes acquire more bacteria and provide greater kinetic activity and power density compared to the unmodified anode. Among all modified anodes, 75 wt% MnO2/HNT exhibits the highest electrochemical performance. The maximum power density is 767.3 mWm−2, which 21.6 higher than the unmodified anode (631 mW/m2). Besides, CE (Coulombic efficiency) was improved 20.7, indicating that more chemical energy transformed to electricity. XRD (X-Ray powder diffraction) and FTIR (Fourier transform infrared spectroscopy) are used to characterize the structure and functional groups of the anode. CV (cyclic voltammetry) scans and SEM (scanning electron microscope) images demonstrate that the measured power density is associated with the attachment of bacteria, the microorganism morphology differed between the modified and the original anode. These findings demonstrate that MnO2/HNT nanocomposites can alter the characteristics of carbon cloth anodes to effectively modify the anode for practical MFC applications.

Suggested Citation

  • Chen, Yingwen & Chen, Liuliu & Li, Peiwen & Xu, Yuan & Fan, Mengjie & Zhu, Shemin & Shen, Shubao, 2016. "Enhanced performance of microbial fuel cells by using MnO2/Halloysite nanotubes to modify carbon cloth anodes," Energy, Elsevier, vol. 109(C), pages 620-628.
  • Handle: RePEc:eee:energy:v:109:y:2016:i:c:p:620-628
    DOI: 10.1016/j.energy.2016.05.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421630651X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.05.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lykidi, Maria & Gourdel, Pascal, 2015. "How to manage flexible nuclear power plants in a deregulated electricity market from the point of view of social welfare?," Energy, Elsevier, vol. 85(C), pages 167-180.
    2. Osmani, Atif & Zhang, Jun, 2014. "Optimal grid design and logistic planning for wind and biomass based renewable electricity supply chains under uncertainties," Energy, Elsevier, vol. 70(C), pages 514-528.
    3. Lizarraga-Garcia, Enrique & Ghobeity, Amin & Totten, Mark & Mitsos, Alexander, 2013. "Optimal operation of a solar-thermal power plant with energy storage and electricity buy-back from grid," Energy, Elsevier, vol. 51(C), pages 61-70.
    4. Zhu, Zhao & Zhang, Da & Mischke, Peggy & Zhang, Xiliang, 2015. "Electricity generation costs of concentrated solar power technologies in China based on operational plants," Energy, Elsevier, vol. 89(C), pages 65-74.
    5. Pascal Gourdel & Maria Lykidi, 2015. "How to manage flexible nuclear power plants in a deregulated electricity market from the point of view of social welfare?," PSE-Ecole d'économie de Paris (Postprint) hal-01477134, HAL.
    6. Cowan, Kelly & Daim, Tugrul & Anderson, Tim, 2010. "Exploring the impact of technology development and adoption for sustainable hydroelectric power and storage technologies in the Pacific Northwest United States," Energy, Elsevier, vol. 35(12), pages 4771-4779.
    7. Pascal Gourdel & Maria Lykidi, 2015. "How to manage flexible nuclear power plants in a deregulated electricity market from the point of view of social welfare?," Post-Print hal-01477134, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ortiz-Martínez, V.M. & Salar-García, M.J. & Touati, K. & Hernández-Fernández, F.J. & de los Ríos, A.P. & Belhoucine, F. & Berrabbah, A. Alioua, 2016. "Assessment of spinel-type mixed valence Cu/Co and Ni/Co-based oxides for power production in single-chamber microbial fuel cells," Energy, Elsevier, vol. 113(C), pages 1241-1249.
    2. Wang, Yuyang, 2024. "Carbon felt electrode modified with RGO/PANI composite material for enhancing renewable energy storage in microbial fuel cells," Renewable Energy, Elsevier, vol. 232(C).
    3. Wang, Yuyang & Wang, Zhijie & Hu, Guangxu, 2023. "Bifunctional polypyrrole/ferroferric oxide as anode material for enhanced electricity generation and energy storage in microbial fuel cell," Renewable Energy, Elsevier, vol. 219(P1).
    4. Shahid, Kanwal & Ramasamy, Deepika Lakshmi & Haapasaari, Sampo & Sillanpää, Mika & Pihlajamäki, Arto, 2021. "Stainless steel and carbon brushes as high-performance anodes for energy production and nutrient recovery using the microbial nutrient recovery system," Energy, Elsevier, vol. 233(C).
    5. Wang, Yuyang & Chen, Ye & Wen, Qing & Zheng, Hongtao & Xu, Haitao & Qi, Lijuan, 2019. "Electricity generation, energy storage, and microbial-community analysis in microbial fuel cells with multilayer capacitive anodes," Energy, Elsevier, vol. 189(C).
    6. Sekar, Aiswarya Devi & Jayabalan, Tamilmani & Muthukumar, Harshiny & Chandrasekaran, Nivedhini Iswarya & Mohamed, Samsudeen Naina & Matheswaran, Manickam, 2019. "Enhancing power generation and treatment of dairy waste water in microbial fuel cell using Cu-doped iron oxide nanoparticles decorated anode," Energy, Elsevier, vol. 172(C), pages 173-180.
    7. Zinadini, S. & Zinatizadeh, A.A. & Rahimi, M. & Vatanpour, V. & Bahrami, K., 2017. "Energy recovery and hygienic water production from wastewater using an innovative integrated microbial fuel cell–membrane separation process," Energy, Elsevier, vol. 141(C), pages 1350-1362.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alhadhrami, Saeed & Soto, Gabriel J & Lindley, Ben, 2023. "Dispatch analysis of flexible power operation with multi-unit small modular reactors," Energy, Elsevier, vol. 280(C).
    2. Srikanth Reddy & Lokesh Panwar & Bijaya Ketan Panigrahi & Rajesh Kumar & Lalit Goel & Ameena Saad Al-Sumaiti, 2020. "A profit-based self-scheduling framework for generation company energy and ancillary service participation in multi-constrained environment with renewable energy penetration," Energy & Environment, , vol. 31(4), pages 549-569, June.
    3. Crampes, Claude & Renault, Jérôme, 2018. "Supply flexibility in electricity markets," TSE Working Papers 18-964, Toulouse School of Economics (TSE).
    4. Lauer, Markus & Thrän, Daniela, 2017. "Biogas plants and surplus generation: Cost driver or reducer in the future German electricity system?," Energy Policy, Elsevier, vol. 109(C), pages 324-336.
    5. Lykidi, Maria & Gourdel, Pascal, 2017. "Optimal management of flexible nuclear power plants in a decarbonising competitive electricity market: The French case," Energy, Elsevier, vol. 132(C), pages 171-185.
    6. Dong, Zhe & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2018. "Multi-layer perception based model predictive control for the thermal power of nuclear superheated-steam supply systems," Energy, Elsevier, vol. 151(C), pages 116-125.
    7. Dong, Zhe & Liu, Miao & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2019. "Automatic generation control for the flexible operation of multimodular high temperature gas-cooled reactor plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 11-31.
    8. Crampes, Claude & Renault, Jérôme, 2019. "How many markets for wholesale electricity when supply ispartially flexible?," Energy Economics, Elsevier, vol. 81(C), pages 465-478.
    9. Scharff, Richard & Amelin, Mikael, 2016. "Trading behaviour on the continuous intraday market Elbas," Energy Policy, Elsevier, vol. 88(C), pages 544-557.
    10. Dong, Zhe & Pan, Yifei & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2017. "Model-free adaptive control law for nuclear superheated-steam supply systems," Energy, Elsevier, vol. 135(C), pages 53-67.
    11. Jiang, Di & Dong, Zhe, 2019. "Practical dynamic matrix control of MHTGR-based nuclear steam supply systems," Energy, Elsevier, vol. 185(C), pages 695-707.
    12. Dong, Zhe & Pan, Yifei, 2018. "A lumped-parameter dynamical model of a nuclear heating reactor cogeneration plant," Energy, Elsevier, vol. 145(C), pages 638-656.
    13. Zhe Dong & Yifei Pan & Zuoyi Zhang & Yujie Dong & Xiaojin Huang, 2017. "Modeling and Control of Fluid Flow Networks with Application to a Nuclear-Solar Hybrid Plant," Energies, MDPI, vol. 10(11), pages 1-21, November.
    14. Ndala Y. Mulongo & Pule A. Kholopane, 2018. "Cost Assessment: Electricity Generating Sources Against Energy Efficiency Measures," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-28, March.
    15. Hoz, Jordi de la & Martín, Helena & Montalà, Montserrat & Matas, José & Guzman, Ramon, 2018. "Assessing the 2014 retroactive regulatory framework applied to the concentrating solar power systems in Spain," Applied Energy, Elsevier, vol. 212(C), pages 1377-1399.
    16. Awan, Ahmed Bilal & Zubair, Muhammad & Chandra Mouli, Kotturu V.V., 2020. "Design, optimization and performance comparison of solar tower and photovoltaic power plants," Energy, Elsevier, vol. 199(C).
    17. Zhao, Zhen-Yu & Chen, Yu-Long & Thomson, John Douglas, 2017. "Levelized cost of energy modeling for concentrated solar power projects: A China study," Energy, Elsevier, vol. 120(C), pages 117-127.
    18. Kost, Christoph & Flath, Christoph M. & Möst, Dominik, 2013. "Concentrating solar power plant investment and operation decisions under different price and support mechanisms," Energy Policy, Elsevier, vol. 61(C), pages 238-248.
    19. Musa, S. Danlami & Zhonghua, Tang & Ibrahim, Abdullateef O. & Habib, Mukhtar, 2018. "China's energy status: A critical look at fossils and renewable options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2281-2290.
    20. Sangpil Ko & Kyoungjoon Choi & Seungmin Yu & Jun Lee, 2022. "A Stochastic Optimization Model for Sustainable Multimodal Transportation for Bioenergy Production," Sustainability, MDPI, vol. 14(3), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:109:y:2016:i:c:p:620-628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.