IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v232y2024ics0960148124011777.html
   My bibliography  Save this article

Carbon felt electrode modified with RGO/PANI composite material for enhancing renewable energy storage in microbial fuel cells

Author

Listed:
  • Wang, Yuyang

Abstract

The microbial fuel cell is a new kind of green power generation technology. In this paper, the graphene oxide was reduced with hydrazine hydrate at a constant temperature. And the composite anode material of reduced graphene oxide and capacitive polyaniline was used to construct the microbial fuel cell, which had the simultaneous function of power generation and energy storage. The experimental results showed that the power density of the microbial fuel cell comprising the carbon felt/reduced graphene oxide/polyaniline anode was 2.19 times higher than that of the carbon felt/polyaniline anode. In the charging 30 min-discharging 30 min test, the stored charge by the carbon felt/reduced graphene oxide/polyaniline anode was 675.44 C/m2, 5.42 times that of the control anode (124.55 C/m2). In the high throughput test, the surface of the carbon felt/reduced graphene oxide/polyaniline modified anode was 1.75 times higher than that of the control anode. The reduced graphene oxide/polyaniline capacitive composite biological anode material prepared here had the advantages to simultaneously generate electricity and store energy. This paper is expected to break through the current performance bottleneck of microbial fuel cells and improve their performance in energy conversion efficiency and stability.

Suggested Citation

  • Wang, Yuyang, 2024. "Carbon felt electrode modified with RGO/PANI composite material for enhancing renewable energy storage in microbial fuel cells," Renewable Energy, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:renene:v:232:y:2024:i:c:s0960148124011777
    DOI: 10.1016/j.renene.2024.121109
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124011777
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:232:y:2024:i:c:s0960148124011777. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.