IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v89y2015icp648-654.html
   My bibliography  Save this article

A method based on impedance spectroscopy for predicting the behavior of novel ionic liquid-polymer inclusion membranes in microbial fuel cells

Author

Listed:
  • Salar-García, M.J.
  • Ortiz-Martínez, V.M.
  • de los Ríos, A.P.
  • Hernández-Fernández, F.J.

Abstract

MFCs (microbial fuel cells) are an emerging technology for simultaneous treatment of wastewater and energy recovery. These devices exploit microbial metabolism to generate electricity from organic matter. The separator is a critical factor in the design of MFCs as it plays a crucial role in the transport of protons from the anode to the cathode, affecting the performance of the cell. It is thus of interest to develop a method to predict the behavior of a separator before being used in MFCs. The present work proposes a new method based on spectroscopy to calculate the internal resistance of several PIMs (polymer inclusion membranes) based on ILs (ionic liquids) and predict their behavior as novel proton exchange membranes in MFCs. Four types of PIMs based on three different groups of ionic liquids were prepared and electrochemically characterized: Methyltrioctyl ammonium chloride, [MTOA+][Cl−], 1-methyl-3-octylimidazolium hexafluorophosphate, [OMIM+][PF6−], Tri-butylmethylphosphonium methylsulphate, [P4,4,4,1+][MeSO4−], and Triisobutyl-(methyl)-phosphonium tosylate, [PI4,I4,I4,1+][TOS−], some of which were patented by our research group to be used as separator in MFCs (P201330453). Finally, the PIMs were evaluated in MFCs for energy production and wastewater treatment and compared with Nafion®117. The results show that the [PI4,I4,I4,1+][TOS−]-based membrane outperformed the rest of separators in terms of power output.

Suggested Citation

  • Salar-García, M.J. & Ortiz-Martínez, V.M. & de los Ríos, A.P. & Hernández-Fernández, F.J., 2015. "A method based on impedance spectroscopy for predicting the behavior of novel ionic liquid-polymer inclusion membranes in microbial fuel cells," Energy, Elsevier, vol. 89(C), pages 648-654.
  • Handle: RePEc:eee:energy:v:89:y:2015:i:c:p:648-654
    DOI: 10.1016/j.energy.2015.05.149
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215007781
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.05.149?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Malik, Monu & Dincer, Ibrahim & Rosen, Marc A., 2015. "Development and analysis of a new renewable energy-based multi-generation system," Energy, Elsevier, vol. 79(C), pages 90-99.
    2. Suleman, F. & Dincer, I. & Agelin-Chaab, M., 2014. "Development of an integrated renewable energy system for multigeneration," Energy, Elsevier, vol. 78(C), pages 196-204.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Ramón-Fernández, A. & Salar-García, M.J. & Ruiz Fernández, D. & Greenman, J. & Ieropoulos, I.A., 2020. "Evaluation of artificial neural network algorithms for predicting the effect of the urine flow rate on the power performance of microbial fuel cells," Energy, Elsevier, vol. 213(C).
    2. Ortiz-Martínez, V.M. & Salar-García, M.J. & Touati, K. & Hernández-Fernández, F.J. & de los Ríos, A.P. & Belhoucine, F. & Berrabbah, A. Alioua, 2016. "Assessment of spinel-type mixed valence Cu/Co and Ni/Co-based oxides for power production in single-chamber microbial fuel cells," Energy, Elsevier, vol. 113(C), pages 1241-1249.
    3. Salar-García, M.J. & Ortiz-Martínez, V.M. & Baicha, Z. & de los Ríos, A.P. & Hernández-Fernández, F.J., 2016. "Scaled-up continuous up-flow microbial fuel cell based on novel embedded ionic liquid-type membrane-cathode assembly," Energy, Elsevier, vol. 101(C), pages 113-120.
    4. Liu, Jiaran & Tan, Jinzhu & Yang, Weizhan & Li, Yang & Wang, Chao, 2021. "Better electrochemical performance of PEMFC under a novel pneumatic clamping mechanism," Energy, Elsevier, vol. 229(C).
    5. Ortiz-Martínez, V.M. & Salar-García, M.J. & Hernández-Fernández, F.J. & de los Ríos, A.P., 2015. "Development and characterization of a new embedded ionic liquid based membrane-cathode assembly for its application in single chamber microbial fuel cells," Energy, Elsevier, vol. 93(P2), pages 1748-1757.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Almahdi, M. & Dincer, I. & Rosen, M.A., 2016. "A new solar based multigeneration system with hot and cold thermal storages and hydrogen production," Renewable Energy, Elsevier, vol. 91(C), pages 302-314.
    2. Sheikh Muhammad Ali Haider & Tahir Abdul Hussain Ratlamwala & Khurram Kamal & Fahad Alqahtani & Mohammed Alkahtani & Emad Mohammad & Moath Alatefi, 2023. "Energy and Exergy Analysis of a Geothermal Sourced Multigeneration System for Sustainable City," Energies, MDPI, vol. 16(4), pages 1-19, February.
    3. Altayib, Khalid & Dincer, Ibrahim, 2022. "Development of an integrated hydropower system with hydrogen and methanol production," Energy, Elsevier, vol. 240(C).
    4. Kerme, Esa Dube & Orfi, Jamel & Fung, Alan S. & Salilih, Elias M. & Khan, Salah Ud-Din & Alshehri, Hassan & Ali, Emad & Alrasheed, Mohammed, 2020. "Energetic and exergetic performance analysis of a solar driven power, desalination and cooling poly-generation system," Energy, Elsevier, vol. 196(C).
    5. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    6. Fidelis. I. Abam & Ogheneruona E. Diemuodeke & Ekwe. B. Ekwe & Mohammed Alghassab & Olusegun D. Samuel & Zafar A. Khan & Muhammad Imran & Muhammad Farooq, 2020. "Exergoeconomic and Environmental Modeling of Integrated Polygeneration Power Plant with Biomass-Based Syngas Supplemental Firing," Energies, MDPI, vol. 13(22), pages 1-27, November.
    7. Shakibi, Hamid & Shokri, Afshar & Assareh, Ehsanolah & Yari, Mortaza & Lee, Moonyong, 2023. "Using machine learning approaches to model and optimize a combined solar/natural gas-based power and freshwater cogeneration system," Applied Energy, Elsevier, vol. 333(C).
    8. Qu, Kaiping & Yu, Tao & Huang, Linni & Yang, Bo & Zhang, Xiaoshun, 2018. "Decentralized optimal multi-energy flow of large-scale integrated energy systems in a carbon trading market," Energy, Elsevier, vol. 149(C), pages 779-791.
    9. Calise, Francesco & de Notaristefani di Vastogirardi, Giulio & Dentice d'Accadia, Massimo & Vicidomini, Maria, 2018. "Simulation of polygeneration systems," Energy, Elsevier, vol. 163(C), pages 290-337.
    10. Powell, Kody M. & Rashid, Khalid & Ellingwood, Kevin & Tuttle, Jake & Iverson, Brian D., 2017. "Hybrid concentrated solar thermal power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 215-237.
    11. Cao, Yan & Dhahad, Hayder A. & Togun, Hussein & Hussen, Hasanen M. & Anqi, Ali E. & Farouk, Naeim & Issakhov, Alibek, 2021. "Feasibility investigation of a novel geothermal-based integrated energy conversion system: Modified specific exergy costing (M-SPECO) method and optimization," Renewable Energy, Elsevier, vol. 180(C), pages 1124-1147.
    12. Islam, Shahid & Dincer, Ibrahim & Yilbas, Bekir Sami, 2015. "Energetic and exergetic performance analyses of a solar energy-based integrated system for multigeneration including thermoelectric generators," Energy, Elsevier, vol. 93(P1), pages 1246-1258.
    13. Jesús García-Domínguez & J. Daniel Marcos, 2021. "Thermodynamic Analysis and Systematic Comparison of Solar-Heated Trigeneration Systems Based on ORC and Absorption Heat Pump," Energies, MDPI, vol. 14(16), pages 1-20, August.
    14. Niasar, Malek Shariati & Ghorbani, Bahram & Amidpour, Majid & Hayati, Reza, 2019. "Developing a hybrid integrated structure of natural gas conversion to liquid fuels, absorption refrigeration cycle and multi effect desalination (exergy and economic analysis)," Energy, Elsevier, vol. 189(C).
    15. José M. Cardemil & Allan R. Starke & Adriana Zurita & Carlos Mata‐Torres & Rodrigo Escobar, 2021. "Integration schemes for hybrid and polygeneration concentrated solar power plants," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(6), November.
    16. Asgari, Armin & Jannatkhah, Javad & Yari, Mortaza & Najafi, Bahman, 2023. "Multi-aspect assessment and multi-objective optimization of sustainable power, heating, and cooling tri-generation system driven by experimentally-produced biodiesels," Energy, Elsevier, vol. 263(PC).
    17. Hou, Rui & Zhang, Nachuan & Gao, Wei & Chen, Kang & Liu, Lijun & Kumar, M. Saravana, 2023. "Design and optimization of a novel flash-binary-based hybrid system to produce power, cooling, freshwater, and liquid hydrogen," Energy, Elsevier, vol. 280(C).
    18. Rahimi, Mohammad Javad & Ghorbani, Bahram & Amidpour, Majid & Hamedi, Mohammad Hossein, 2021. "Configuration optimization of a multi-generation plant based on biomass gasification," Energy, Elsevier, vol. 227(C).
    19. Ebadollahi, Mohammad & Rostamzadeh, Hadi & Pedram, Mona Zamani & Ghaebi, Hadi & Amidpour, Majid, 2019. "Proposal and assessment of a new geothermal-based multigeneration system for cooling, heating, power, and hydrogen production, using LNG cold energy recovery," Renewable Energy, Elsevier, vol. 135(C), pages 66-87.
    20. Modi, Anish & Bühler, Fabian & Andreasen, Jesper Graa & Haglind, Fredrik, 2017. "A review of solar energy based heat and power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1047-1064.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:89:y:2015:i:c:p:648-654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.