IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v88y1996i2p320-327.html
   My bibliography  Save this article

Project management with time, cost, and quality considerations

Author

Listed:
  • Babu, A. J. G.
  • Suresh, Nalina

Abstract

No abstract is available for this item.

Suggested Citation

  • Babu, A. J. G. & Suresh, Nalina, 1996. "Project management with time, cost, and quality considerations," European Journal of Operational Research, Elsevier, vol. 88(2), pages 320-327, January.
  • Handle: RePEc:eee:ejores:v:88:y:1996:i:2:p:320-327
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0377-2217(94)00202-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicolai Siemens, 1971. "A Simple CPM Time-Cost Tradeoff Algorithm," Management Science, INFORMS, vol. 17(6), pages 354-363, February.
    2. D. R. Fulkerson, 1961. "A Network Flow Computation for Project Cost Curves," Management Science, INFORMS, vol. 7(2), pages 167-178, January.
    3. S. K. Goyal, 1975. "Note--A Note on "A Simple CPM Time-Cost Tradeoff Algorithm"," Management Science, INFORMS, vol. 21(6), pages 718-722, February.
    4. E. B. Berman, 1964. "Resource Allocation in a PERT Network Under Continuous Activity Time-Cost Functions," Management Science, INFORMS, vol. 10(4), pages 734-745, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. C-C Chang & R-S Chen, 2007. "Project advancement and its applications to multi-air-route quality budget allocation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(8), pages 1008-1020, August.
    2. Fang Fu & Tao Zhang, 2016. "A New Model for Solving Time-Cost-Quality Trade-Off Problems in Construction," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-15, December.
    3. Jeunet, Jully & Bou Orm, Mayassa, 2020. "Optimizing temporary work and overtime in the Time Cost Quality Trade-off Problem," European Journal of Operational Research, Elsevier, vol. 284(2), pages 743-761.
    4. Rui Xiong & Hongyi Sun & Shufen Zheng & Sichu Liu, 2024. "A Multi-Criteria Assessment Model for Cooperative Technology Transfer Projects from Universities to Industries," Mathematics, MDPI, vol. 12(12), pages 1-32, June.
    5. Öncü Hazir & Gündüz Ulusoy, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," Post-Print hal-02898162, HAL.
    6. Kosztyán, Zsolt T. & Jakab, Róbert & Novák, Gergely & Hegedűs, Csaba, 2020. "Survive IT! Survival analysis of IT project planning approaches," Operations Research Perspectives, Elsevier, vol. 7(C).
    7. Jin, Maozhu & Song, Lijun & Wang, Yanan & Zeng, Yucheng, 2018. "Longitudinal cooperative robust optimization model for sustainable supply chain management," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 95-105.
    8. Perrone, G. & Roma, P. & Lo Nigro, G., 2010. "Designing multi-attribute auctions for engineering services procurement in new product development in the automotive context," International Journal of Production Economics, Elsevier, vol. 124(1), pages 20-31, March.
    9. Yi-Kai Juan & I-Chieh Lin, 2018. "Optimal Cost–Quality Trade-Off Model for Differentiating Presale Housing Quality Strategies," Sustainability, MDPI, vol. 10(3), pages 1-17, March.
    10. Choi, Yunsik & Delise, Lisa A. & Lee, Brandon W. & Neely, Jerry, 2021. "Effective staffing of projects for reconciling conflict between cost efficiency and quality," International Journal of Production Economics, Elsevier, vol. 234(C).
    11. Arda Turkgenci & Huseyin Guden & Mehmet Gülşen, 2021. "Decomposition based extended project scheduling for make-to-order production," Operational Research, Springer, vol. 21(2), pages 801-825, June.
    12. Sayyid Ali Banihashemi & Mohammad Khalilzadeh, 2023. "Towards sustainable project scheduling with reducing environmental pollution of projects: fuzzy multi-objective programming approach to a case study of Eastern Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 7737-7767, August.
    13. Asadabadi, Mehdi Rajabi & Zwikael, Ofer, 2021. "Integrating risk into estimations of project activities' time and cost: A stratified approach," European Journal of Operational Research, Elsevier, vol. 291(2), pages 482-490.
    14. Zsolt T. Kosztyán & István Szalkai, 2020. "Multimode resource-constrained project scheduling in flexible projects," Journal of Global Optimization, Springer, vol. 76(1), pages 211-241, January.
    15. Mehrnoosh Zohrehvandi & Shakib Zohrehvandi & Mohammad Khalilzadeh & Maghsoud Amiri & Fariborz Jolai & Edmundas Kazimieras Zavadskas & Jurgita Antucheviciene, 2024. "A Multi-Objective Mathematical Programming Model for Project-Scheduling Optimization Considering Customer Satisfaction in Construction Projects," Mathematics, MDPI, vol. 12(2), pages 1-16, January.
    16. Hazır, Öncü & Ulusoy, Gündüz, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," International Journal of Production Economics, Elsevier, vol. 223(C).
    17. Kosztyán, Zsolt T. & Szalkai, István, 2018. "Hybrid time-quality-cost trade-off problems," Operations Research Perspectives, Elsevier, vol. 5(C), pages 306-318.
    18. Qingfeng Meng & Zhen Li & Jianguo Du & Huimin Liu & Xiang Ding, 2019. "Negotiation for Time Optimization in Construction Projects with Competitive and Social Welfare Preferences," Complexity, Hindawi, vol. 2019, pages 1-13, January.
    19. Kosztyán, Zsolt T. & Pribojszki-Németh, Anikó & Szalkai, István, 2019. "Hybrid multimode resource-constrained maintenance project scheduling problem," Operations Research Perspectives, Elsevier, vol. 6(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcin Anholcer & Helena Gaspars-Wieloch, 2011. "Efficiency analysis of the Kaufmann and Dezbazeille algorithm for the deadline problem," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 21(1), pages 5-18.
    2. Helena Gaspars, 2006. "A conception of a new algorithm for the project time-cost analysis," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 16(3-4), pages 5-27.
    3. R L Bregman, 2009. "Preemptive expediting to improve project due date performance," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 120-129, January.
    4. Bregman, Robert L., 2009. "A heuristic procedure for solving the dynamic probabilistic project expediting problem," European Journal of Operational Research, Elsevier, vol. 192(1), pages 125-137, January.
    5. S. Selcuk Erenguc & Taeho Ahn & Daniel G. Conway, 2001. "The resource constrained project scheduling problem with multiple crashable modes: An exact solution method," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(2), pages 107-127, March.
    6. Ahn, Taeho & Erenguc, S. Selcuk, 1998. "The resource constrained project scheduling problem with multiple crashable modes: A heuristic procedure," European Journal of Operational Research, Elsevier, vol. 107(2), pages 250-259, June.
    7. Yaghoubi, Saeed & Noori, Siamak & Azaron, Amir & Fynes, Brian, 2015. "Resource allocation in multi-class dynamic PERT networks with finite capacity," European Journal of Operational Research, Elsevier, vol. 247(3), pages 879-894.
    8. Thomas A. Roemer & Reza Ahmadi, 2004. "Concurrent Crashing and Overlapping in Product Development," Operations Research, INFORMS, vol. 52(4), pages 606-622, August.
    9. Vanhoucke, Mario, 2005. "New computational results for the discrete time/cost trade-off problem with time-switch constraints," European Journal of Operational Research, Elsevier, vol. 165(2), pages 359-374, September.
    10. Azaron, Amir & Tavakkoli-Moghaddam, Reza, 2007. "Multi-objective time-cost trade-off in dynamic PERT networks using an interactive approach," European Journal of Operational Research, Elsevier, vol. 180(3), pages 1186-1200, August.
    11. Azaron, Amir & Katagiri, Hideki & Sakawa, Masatoshi & Kato, Kosuke & Memariani, Azizollah, 2006. "A multi-objective resource allocation problem in PERT networks," European Journal of Operational Research, Elsevier, vol. 172(3), pages 838-854, August.
    12. Thomas A. Roemer & Reza Ahmadi & Robert H. Wang, 2000. "Time-Cost Trade-Offs in Overlapped Product Development," Operations Research, INFORMS, vol. 48(6), pages 858-865, December.
    13. Choi, Byung-Cheon & Park, Myoung-Ju, 2015. "A continuous time–cost tradeoff problem with multiple milestones and completely ordered jobs," European Journal of Operational Research, Elsevier, vol. 244(3), pages 748-752.
    14. Chen, Shih-Pin & Tsai, Ming-Jiun, 2011. "Time-cost trade-off analysis of project networks in fuzzy environments," European Journal of Operational Research, Elsevier, vol. 212(2), pages 386-397, July.
    15. A B Hafızoğlu & M Azizoğlu, 2010. "Linear programming based approaches for the discrete time/cost trade-off problem in project networks," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(4), pages 676-685, April.
    16. Herroelen, Willy & Leus, Roel, 2004. "The construction of stable project baseline schedules," European Journal of Operational Research, Elsevier, vol. 156(3), pages 550-565, August.
    17. Dayal Madhukar & Verma, Sanjay, 2015. "Multi-processor Exact Procedures for Regular Measures of the Multi-mode RCPSP," IIMA Working Papers WP2015-03-25, Indian Institute of Management Ahmedabad, Research and Publication Department.
    18. V. Sireesha & N. Ravi Shankar, 2013. "A new approach to find project characteristics and multiple possible critical paths in a fuzzy project network," Fuzzy Information and Engineering, Springer, vol. 5(1), pages 69-85, March.
    19. Perrone, G. & Roma, P. & Lo Nigro, G., 2010. "Designing multi-attribute auctions for engineering services procurement in new product development in the automotive context," International Journal of Production Economics, Elsevier, vol. 124(1), pages 20-31, March.
    20. Amir Azaron & Hideki Katagiri & Masatoshi Sakawa, 2007. "Time-cost trade-off via optimal control theory in Markov PERT networks," Annals of Operations Research, Springer, vol. 150(1), pages 47-64, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:88:y:1996:i:2:p:320-327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.