IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v212y2011i2p386-397.html
   My bibliography  Save this article

Time-cost trade-off analysis of project networks in fuzzy environments

Author

Listed:
  • Chen, Shih-Pin
  • Tsai, Ming-Jiun

Abstract

This paper proposes a novel approach for time-cost trade-off analysis of a project network in fuzzy environments. Different from the results of previous studies, in this paper the membership function of the fuzzy minimum total crash cost is constructed based on Zadeh's extension principle and fuzzy solutions are provided. A pair of two-level mathematical programs parameterized by possibility level [alpha] is formulated to calculate the lower and upper bounds of the fuzzy minimum total crash cost at [alpha]. By enumerating different values of [alpha], the membership function of the fuzzy minimum total crash cost is constructed, and the corresponding optimal activity time for each activity is also obtained at the same time. An example of time-cost trade-off problem with several fuzzy parameters is solved successfully to demonstrate the validity of the proposed approach. Since the minimum total crash cost is expressed by a membership function rather than by a crisp value, the fuzziness of parameters is conserved completely, and more information is provided for time-cost trade-off analysis in project management. The proposed approach also can be applied to time-cost trade-off problems with other characteristics.

Suggested Citation

  • Chen, Shih-Pin & Tsai, Ming-Jiun, 2011. "Time-cost trade-off analysis of project networks in fuzzy environments," European Journal of Operational Research, Elsevier, vol. 212(2), pages 386-397, July.
  • Handle: RePEc:eee:ejores:v:212:y:2011:i:2:p:386-397
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(11)00133-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Shih-Pin, 2007. "Analysis of critical paths in a project network with fuzzy activity times," European Journal of Operational Research, Elsevier, vol. 183(1), pages 442-459, November.
    2. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    3. Golenko-Ginzburg, Dimitri & Gonik, Aharon, 1997. "Stochastic network project scheduling with non-consumable limited resources," International Journal of Production Economics, Elsevier, vol. 48(1), pages 29-37, January.
    4. Steve Phillips, Jr. & Mohamed I. Dessouky, 1977. "Solving the Project Time/Cost Tradeoff Problem Using the Minimal Cut Concept," Management Science, INFORMS, vol. 24(4), pages 393-400, December.
    5. Rommelfanger, Heinrich, 1996. "Fuzzy linear programming and applications," European Journal of Operational Research, Elsevier, vol. 92(3), pages 512-527, August.
    6. Nicolai Siemens, 1971. "A Simple CPM Time-Cost Tradeoff Algorithm," Management Science, INFORMS, vol. 17(6), pages 354-363, February.
    7. F. Brian Talbot, 1982. "Resource-Constrained Project Scheduling with Time-Resource Tradeoffs: The Nonpreemptive Case," Management Science, INFORMS, vol. 28(10), pages 1197-1210, October.
    8. Ehsan Eshtehardian & Abbas Afshar & Reza Abbasnia, 2008. "Time-cost optimization: using GA and fuzzy sets theory for uncertainties in cost," Construction Management and Economics, Taylor & Francis Journals, vol. 26(7), pages 679-691.
    9. W. J. Gutjahr & C. Strauss & E. Wagner, 2000. "A Stochastic Branch-and-Bound Approach to Activity Crashing in Project Management," INFORMS Journal on Computing, INFORMS, vol. 12(2), pages 125-135, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Öncü Hazir & Gündüz Ulusoy, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," Post-Print hal-02898162, HAL.
    2. Xiaolei Wang & Tiejun Ci & Sang-Bing Tsai & Aijun Liu & Quan Chen, 2018. "An empirical study of collaborative capacity evaluation and scheduling optimization for a CPD project," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-16, August.
    3. He-Yau Kang & Amy H. I. Lee & Tzu-Ting Huang, 2016. "Project Management for a Wind Turbine Construction by Applying Fuzzy Multiple Objective Linear Programming Models," Energies, MDPI, vol. 9(12), pages 1-15, December.
    4. Hazır, Öncü & Ulusoy, Gündüz, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," International Journal of Production Economics, Elsevier, vol. 223(C).
    5. Zhao, Mingxuan & Zhou, Jian & Wang, Ke & Pantelous, Athanasios A., 2023. "Project scheduling problem with fuzzy activity durations: A novel operational law based solution framework," European Journal of Operational Research, Elsevier, vol. 306(2), pages 519-534.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Öncü Hazir & Gündüz Ulusoy, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," Post-Print hal-02898162, HAL.
    2. Hazır, Öncü & Ulusoy, Gündüz, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," International Journal of Production Economics, Elsevier, vol. 223(C).
    3. R L Bregman, 2009. "Preemptive expediting to improve project due date performance," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 120-129, January.
    4. Bregman, Robert L., 2009. "A heuristic procedure for solving the dynamic probabilistic project expediting problem," European Journal of Operational Research, Elsevier, vol. 192(1), pages 125-137, January.
    5. Mikhailov, L., 2004. "A fuzzy approach to deriving priorities from interval pairwise comparison judgements," European Journal of Operational Research, Elsevier, vol. 159(3), pages 687-704, December.
    6. Tien-Fu Liang & Tien-Shou Huang & Ming-Feng Yang, 2012. "Application of fuzzy mathematical programming to imprecise project management decisions," Quality & Quantity: International Journal of Methodology, Springer, vol. 46(5), pages 1451-1470, August.
    7. Li, Haitao & Womer, Norman K., 2015. "Solving stochastic resource-constrained project scheduling problems by closed-loop approximate dynamic programming," European Journal of Operational Research, Elsevier, vol. 246(1), pages 20-33.
    8. Shih, Li-Hsing, 1999. "Cement transportation planning via fuzzy linear programming," International Journal of Production Economics, Elsevier, vol. 58(3), pages 277-287, January.
    9. Osama Mohamed ElSahly & Salma Ahmed & Akmal Abdelfatah, 2023. "Systematic Review of the Time-Cost Optimization Models in Construction Management," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    10. Berna Tektaş & Hasan Hüseyin Turan & Nihat Kasap & Ferhan Çebi & Dursun Delen, 2022. "A Fuzzy Prescriptive Analytics Approach to Power Generation Capacity Planning," Energies, MDPI, vol. 15(9), pages 1-26, April.
    11. Sakawa, Masatoshi & Kato, Kosuke & Nishizaki, Ichiro, 2003. "An interactive fuzzy satisficing method for multiobjective stochastic linear programming problems through an expectation model," European Journal of Operational Research, Elsevier, vol. 145(3), pages 665-672, March.
    12. Figueroa–García, Juan Carlos & Hernández, Germán & Franco, Carlos, 2022. "A review on history, trends and perspectives of fuzzy linear programming," Operations Research Perspectives, Elsevier, vol. 9(C).
    13. Luhandjula, M.K., 2006. "Fuzzy stochastic linear programming: Survey and future research directions," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1353-1367, November.
    14. Martinez, Michael A. & Newman, Alexandra M., 2011. "A solution approach for optimizing long- and short-term production scheduling at LKAB's Kiruna mine," European Journal of Operational Research, Elsevier, vol. 211(1), pages 184-197, May.
    15. Tien-Fu Liang, 2012. "Integrated manufacturing/distribution planning decisions with multiple imprecise goals in an uncertain environment," Quality & Quantity: International Journal of Methodology, Springer, vol. 46(1), pages 137-153, January.
    16. Brucker, Peter & Drexl, Andreas & Mohring, Rolf & Neumann, Klaus & Pesch, Erwin, 1999. "Resource-constrained project scheduling: Notation, classification, models, and methods," European Journal of Operational Research, Elsevier, vol. 112(1), pages 3-41, January.
    17. Foulds, Les R. & do Nascimento, Hugo A.D. & Calixto, Iacer C.A.C. & Hall, Bryon R. & Longo, Humberto, 2013. "A fuzzy set-based approach to origin–destination matrix estimation in urban traffic networks with imprecise data," European Journal of Operational Research, Elsevier, vol. 231(1), pages 190-201.
    18. Zhang, Y.M. & Lu, H.W. & Nie, X.H. & He, L. & Du, P., 2014. "An interactive inexact fuzzy bounded programming approach for agricultural water quality management," Agricultural Water Management, Elsevier, vol. 133(C), pages 104-111.
    19. Herroelen, Willy & Leus, Roel, 2005. "Project scheduling under uncertainty: Survey and research potentials," European Journal of Operational Research, Elsevier, vol. 165(2), pages 289-306, September.
    20. Jimenez, Mariano & Arenas, Mar & Bilbao, Amelia & Rodri'guez, M. Victoria, 2007. "Linear programming with fuzzy parameters: An interactive method resolution," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1599-1609, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:212:y:2011:i:2:p:386-397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.