IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v318y2024i3p927-953.html
   My bibliography  Save this article

Collusion by mistake: Does algorithmic sophistication drive supra-competitive profits?

Author

Listed:
  • Abada, Ibrahim
  • Lambin, Xavier
  • Tchakarov, Nikolay

Abstract

A burgeoning literature shows that self-learning algorithms may, under some conditions, reach seemingly-collusive outcomes: after repeated interaction, competing algorithms earn supra-competitive profits, at the expense of efficiency and consumer welfare. This paper offers evidence that such behavior can stem from insufficient exploration during the learning process and that algorithmic sophistication might increase competition. In particular, we show that allowing for more thorough exploration does lead otherwise seemingly-collusive Q-learning algorithms to play more competitively. We first provide a theoretical illustration of this phenomenon by analyzing the competition between two stylized Q-learning algorithms in a Prisoner’s Dilemma framework. Second, via simulations, we show that some more sophisticated algorithms exploit the seemingly-collusive ones. Following these results, we argue that the advancement of algorithms in sophistication and computational capabilities may, in some situations, provide a solution to the challenge of algorithmic seeming collusion, rather than exacerbate it.

Suggested Citation

  • Abada, Ibrahim & Lambin, Xavier & Tchakarov, Nikolay, 2024. "Collusion by mistake: Does algorithmic sophistication drive supra-competitive profits?," European Journal of Operational Research, Elsevier, vol. 318(3), pages 927-953.
  • Handle: RePEc:eee:ejores:v:318:y:2024:i:3:p:927-953
    DOI: 10.1016/j.ejor.2024.06.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722172400434X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.06.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Shunqin & Guo, Zhengfeng & Zhao, Xinlei, 2021. "Predicting mortgage early delinquency with machine learning methods," European Journal of Operational Research, Elsevier, vol. 290(1), pages 358-372.
    2. Jacob W. Crandall & Mayada Oudah & Tennom & Fatimah Ishowo-Oloko & Sherief Abdallah & Jean-François Bonnefon & Manuel Cebrian & Azim Shariff & Michael A. Goodrich & Iyad Rahwan, 2018. "Cooperating with machines," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
      • Abdallah, Sherief & Bonnefon, Jean-François & Cebrian, Manuel & Crandall, Jacob W. & Ishowo-Oloko, Fatimah & Oudah, Mayada & Rahwan, Iyad & Shariff, Azim & Tennom,, 2017. "Cooperating with Machines," TSE Working Papers 17-806, Toulouse School of Economics (TSE).
      • Abdallah, Sherief & Bonnefon, Jean-François & Cebrian, Manuel & Crandall, Jacob W. & Ishowo-Oloko, Fatimah & Oudah, Mayada & Rahwan, Iyad & Shariff, Azim & Tennom,, 2017. "Cooperating with Machines," IAST Working Papers 17-68, Institute for Advanced Study in Toulouse (IAST).
      • Jacob Crandall & Mayada Oudah & Fatimah Ishowo-Oloko Tennom & Fatimah Ishowo-Oloko & Sherief Abdallah & Jean-François Bonnefon & Manuel Cebrian & Azim Shariff & Michael Goodrich & Iyad Rahwan, 2018. "Cooperating with machines," Post-Print hal-01897802, HAL.
    3. John M. Connor, 2003. "Private International Cartels: Effectiveness, Welfare, and Anticartel Enforcement," Working Papers 03-12, Purdue University, College of Agriculture, Department of Agricultural Economics.
    4. Arnoud V. den Boer & Janusz M. Meylahn & Maarten Pieter Schinkel, 2022. "Artificial Collusion: Examining Supracompetitive Pricing by Q-learning Algorithms," Tinbergen Institute Discussion Papers 22-067/VII, Tinbergen Institute.
    5. Corredera, Alberto & Ruiz, Carlos, 2023. "Prescriptive selection of machine learning hyperparameters with applications in power markets: Retailer’s optimal trading," European Journal of Operational Research, Elsevier, vol. 306(1), pages 370-388.
    6. J. M. Meylahn & L. Janssen & Hassan Zargarzadeh, 2022. "Limiting Dynamics for Q-Learning with Memory One in Symmetric Two-Player, Two-Action Games," Complexity, Hindawi, vol. 2022, pages 1-20, November.
    7. Zach Y. Brown & Alexander MacKay, 2023. "Competition in Pricing Algorithms," American Economic Journal: Microeconomics, American Economic Association, vol. 15(2), pages 109-156, May.
    8. Dieter, Peter & Caron, Matthew & Schryen, Guido, 2023. "Integrating driver behavior into last-mile delivery routing: Combining machine learning and optimization in a hybrid decision support framework," European Journal of Operational Research, Elsevier, vol. 311(1), pages 283-300.
    9. Sherly Alfonso-S'anchez & Jes'us Solano & Alejandro Correa-Bahnsen & Kristina P. Sendova & Cristi'an Bravo, 2023. "Optimizing Credit Limit Adjustments Under Adversarial Goals Using Reinforcement Learning," Papers 2306.15585, arXiv.org, revised Feb 2024.
    10. Chen, Yujia & Calabrese, Raffaella & Martin-Barragan, Belen, 2024. "Interpretable machine learning for imbalanced credit scoring datasets," European Journal of Operational Research, Elsevier, vol. 312(1), pages 357-372.
    11. Dolgopolov, Arthur, 2024. "Reinforcement learning in a prisoner's dilemma," Games and Economic Behavior, Elsevier, vol. 144(C), pages 84-103.
    12. Schmidt, David & Shupp, Robert & Walker, James M. & Ostrom, Elinor, 2003. "Playing safe in coordination games:: the roles of risk dominance, payoff dominance, and history of play," Games and Economic Behavior, Elsevier, vol. 42(2), pages 281-299, February.
    13. Matthias Hettich, 2021. "Algorithmic Collusion: Insights from Deep Learning," CQE Working Papers 9421, Center for Quantitative Economics (CQE), University of Muenster.
    14. Yilmaz, Dogacan & Büyüktahtakın, İ. Esra, 2024. "An expandable machine learning-optimization framework to sequential decision-making," European Journal of Operational Research, Elsevier, vol. 314(1), pages 280-296.
    15. Louis Kaplow, 2013. "Competition Policy and Price Fixing," Economics Books, Princeton University Press, edition 1, volume 1, number 10005.
    16. Stephanie Assad & Robert Clark & Daniel Ershov & Lei Xu, 2024. "Algorithmic Pricing and Competition: Empirical Evidence from the German Retail Gasoline Market," Journal of Political Economy, University of Chicago Press, vol. 132(3), pages 723-771.
    17. Katsafados, Apostolos G. & Leledakis, George N. & Pyrgiotakis, Emmanouil G. & Androutsopoulos, Ion & Fergadiotis, Manos, 2024. "Machine learning in bank merger prediction: A text-based approach," European Journal of Operational Research, Elsevier, vol. 312(2), pages 783-797.
    18. Maruta, Toshimasa, 1997. "On the Relationship between Risk-Dominance and Stochastic Stability," Games and Economic Behavior, Elsevier, vol. 19(2), pages 221-234, May.
    19. Timo Klein, 2021. "Autonomous algorithmic collusion: Q‐learning under sequential pricing," RAND Journal of Economics, RAND Corporation, vol. 52(3), pages 538-558, September.
    20. Xu, Jianyu & Liu, Bin & Zhao, Xiujie & Wang, Xiao-Lin, 2024. "Online reinforcement learning for condition-based group maintenance using factored Markov decision processes," European Journal of Operational Research, Elsevier, vol. 315(1), pages 176-190.
    21. Emilio Calvano & Giacomo Calzolari & Vincenzo Denicolò & Sergio Pastorello, 2020. "Artificial Intelligence, Algorithmic Pricing, and Collusion," American Economic Review, American Economic Association, vol. 110(10), pages 3267-3297, October.
    22. Alfonso-Sánchez, Sherly & Solano, Jesús & Correa-Bahnsen, Alejandro & Sendova, Kristina P. & Bravo, Cristián, 2024. "Optimizing credit limit adjustments under adversarial goals using reinforcement learning," European Journal of Operational Research, Elsevier, vol. 315(2), pages 802-817.
    23. Waltman, Ludo & Kaymak, Uzay, 2008. "Q-learning agents in a Cournot oligopoly model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(10), pages 3275-3293, October.
    24. Dehaybe, Henri & Catanzaro, Daniele & Chevalier, Philippe, 2024. "Deep Reinforcement Learning for inventory optimization with non-stationary uncertain demand," European Journal of Operational Research, Elsevier, vol. 314(2), pages 433-445.
    25. Müller, David & Müller, Marcus G. & Kress, Dominik & Pesch, Erwin, 2022. "An algorithm selection approach for the flexible job shop scheduling problem: Choosing constraint programming solvers through machine learning," European Journal of Operational Research, Elsevier, vol. 302(3), pages 874-891.
    26. Epivent, Andréa & Lambin, Xavier, 2024. "On algorithmic collusion and reward–punishment schemes," Economics Letters, Elsevier, vol. 237(C).
    27. Mailath, George J. & Samuelson, Larry, 2006. "Repeated Games and Reputations: Long-Run Relationships," OUP Catalogue, Oxford University Press, number 9780195300796.
    28. Sigrist, Fabio & Leuenberger, Nicola, 2023. "Machine learning for corporate default risk: Multi-period prediction, frailty correlation, loan portfolios, and tail probabilities," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1390-1406.
    29. Burka, Dávid & Puppe, Clemens & Szepesváry, László & Tasnádi, Attila, 2022. "Voting: A machine learning approach," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1003-1017.
    30. John Asker & Chaim Fershtman & Ariel Pakes, 2022. "Artificial Intelligence, Algorithm Design, and Pricing," AEA Papers and Proceedings, American Economic Association, vol. 112, pages 452-456, May.
    31. Jeanine Miklós-Thal & Catherine Tucker, 2019. "Collusion by Algorithm: Does Better Demand Prediction Facilitate Coordination Between Sellers?," Management Science, INFORMS, vol. 65(4), pages 1552-1561, April.
    32. McHale, Ian G. & Holmes, Benjamin, 2023. "Estimating transfer fees of professional footballers using advanced performance metrics and machine learning," European Journal of Operational Research, Elsevier, vol. 306(1), pages 389-399.
    33. Xiong, Yingqiu & Liu, Yezheng & Qian, Yang & Jiang, Yuanchun & Chai, Yidong & Ling, Haifeng, 2024. "Review-based recommendation under preference uncertainty: An asymmetric deep learning framework," European Journal of Operational Research, Elsevier, vol. 316(3), pages 1044-1057.
    34. William L. Cooper & Tito Homem-de-Mello & Anton J. Kleywegt, 2015. "Learning and Pricing with Models That Do Not Explicitly Incorporate Competition," Operations Research, INFORMS, vol. 63(1), pages 86-103, February.
    35. Jin, Jiahuan & Cui, Tianxiang & Bai, Ruibin & Qu, Rong, 2024. "Container port truck dispatching optimization using Real2Sim based deep reinforcement learning," European Journal of Operational Research, Elsevier, vol. 315(1), pages 161-175.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patrice Bougette & Oliver Budzinski & Frédéric Marty, 2024. "Ex-ante versus Ex-post in Competition Law Enforcement: Blurred Boundaries and Economic Rationale," Working Papers AFED 24-07, Association Francaise d'Economie du Droit (AFED), revised Sep 2024.
    2. Eshwar Ram Arunachaleswaran & Natalie Collina & Sampath Kannan & Aaron Roth & Juba Ziani, 2024. "Algorithmic Collusion Without Threats," Papers 2409.03956, arXiv.org, revised Dec 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gonzalo Ballestero, 2021. "Collusion and Artificial Intelligence: A computational experiment with sequential pricing algorithms under stochastic costs," Young Researchers Working Papers 1, Universidad de San Andres, Departamento de Economia, revised Oct 2022.
    2. Justin P. Johnson & Andrew Rhodes & Matthijs Wildenbeest, 2023. "Platform Design When Sellers Use Pricing Algorithms," Econometrica, Econometric Society, vol. 91(5), pages 1841-1879, September.
    3. Fourberg, Niklas & Marques-Magalhaes, Katrin & Wiewiorra, Lukas, 2022. "They are among us: Pricing behavior of algorithms in the field," WIK Working Papers 6, WIK Wissenschaftliches Institut für Infrastruktur und Kommunikationsdienste GmbH, Bad Honnef.
    4. Dolgopolov, Arthur, 2024. "Reinforcement learning in a prisoner's dilemma," Games and Economic Behavior, Elsevier, vol. 144(C), pages 84-103.
    5. Fourberg, Niklas & Marques Magalhaes, Katrin & Wiewiorra, Lukas, 2023. "They Are Among Us: Pricing Behavior of Algorithms in the Field," 32nd European Regional ITS Conference, Madrid 2023: Realising the digital decade in the European Union – Easier said than done? 277958, International Telecommunications Society (ITS).
    6. Gonzalo Ballestero, 2022. "Collusion and Artificial Intelligence: A Computational Experiment with Sequential Pricing Algorithms under Stochastic Costs," Working Papers 118, Red Nacional de Investigadores en Economía (RedNIE).
    7. Werner, Tobias, 2021. "Algorithmic and human collusion," DICE Discussion Papers 372, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    8. Epivent, Andréa & Lambin, Xavier, 2024. "On algorithmic collusion and reward–punishment schemes," Economics Letters, Elsevier, vol. 237(C).
    9. Normann, Hans-Theo & Sternberg, Martin, 2023. "Human-algorithm interaction: Algorithmic pricing in hybrid laboratory markets," European Economic Review, Elsevier, vol. 152(C).
    10. Joseph E. Harrington, 2022. "The Effect of Outsourcing Pricing Algorithms on Market Competition," Management Science, INFORMS, vol. 68(9), pages 6889-6906, September.
    11. Calvano, Emilio & Calzolari, Giacomo & Denicolò, Vincenzo & Pastorello, Sergio, 2023. "Algorithmic collusion: Genuine or spurious?," International Journal of Industrial Organization, Elsevier, vol. 90(C).
    12. Bernhard Kasberger & Simon Martin & Hans-Theo Normann & Tobias Werner, 2024. "Algorithmic Cooperation," CESifo Working Paper Series 11124, CESifo.
    13. Inkoo Cho & Noah Williams, 2024. "Collusive Outcomes Without Collusion," Papers 2403.07177, arXiv.org.
    14. Thomas Loots & Arnoud V. den Boer, 2023. "Data‐driven collusion and competition in a pricing duopoly with multinomial logit demand," Production and Operations Management, Production and Operations Management Society, vol. 32(4), pages 1169-1186, April.
    15. Lucila Porto, 2022. "Q-Learning algorithms in a Hotelling model," Asociación Argentina de Economía Política: Working Papers 4587, Asociación Argentina de Economía Política.
    16. Emilio Calvano & Giacomo Calzolari & Vincenzo Denicolò & Sergio Pastorello, 2019. "Algorithmic Pricing What Implications for Competition Policy?," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 55(1), pages 155-171, August.
    17. Bingyan Han, 2021. "Understanding algorithmic collusion with experience replay," Papers 2102.09139, arXiv.org, revised Mar 2021.
    18. Martino Banchio & Giacomo Mantegazza, 2022. "Artificial Intelligence and Spontaneous Collusion," Papers 2202.05946, arXiv.org, revised Sep 2023.
    19. Arnoud V. den Boer & Janusz M. Meylahn & Maarten Pieter Schinkel, 2022. "Artificial Collusion: Examining Supracompetitive Pricing by Q-learning Algorithms," Tinbergen Institute Discussion Papers 22-067/VII, Tinbergen Institute.
    20. Aleksei Pastushkov, 2024. "Market efficiency, informational asymmetry and pseudo-collusion of adaptively learning agents," Papers 2411.05032, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:318:y:2024:i:3:p:927-953. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.