IDEAS home Printed from https://ideas.repec.org/a/aea/aecrev/v110y2020i10p3267-97.html
   My bibliography  Save this article

Artificial Intelligence, Algorithmic Pricing, and Collusion

Author

Listed:
  • Emilio Calvano
  • Giacomo Calzolari
  • Vincenzo Denicolò
  • Sergio Pastorello

Abstract

Increasingly, algorithms are supplanting human decision-makers in pricing goods and services. To analyze the possible consequences, we study experimentally the behavior of algorithms powered by Artificial Intelligence (Q-learning) in a workhorse oligopoly model of repeated price competition. We find that the algorithms consistently learn to charge supracompetitive prices, without communicating with one another. The high prices are sustained by collusive strategies with a finite phase of punishment followed by a gradual return to cooperation. This finding is robust to asymmetries in cost or demand, changes in the number of players, and various forms of uncertainty.

Suggested Citation

  • Emilio Calvano & Giacomo Calzolari & Vincenzo Denicolò & Sergio Pastorello, 2020. "Artificial Intelligence, Algorithmic Pricing, and Collusion," American Economic Review, American Economic Association, vol. 110(10), pages 3267-3297, October.
  • Handle: RePEc:aea:aecrev:v:110:y:2020:i:10:p:3267-97
    DOI: 10.1257/aer.20190623
    as

    Download full text from publisher

    File URL: https://www.aeaweb.org/doi/10.1257/aer.20190623
    Download Restriction: no

    File URL: https://doi.org/10.3886/E119462V1
    Download Restriction: no

    File URL: https://www.aeaweb.org/doi/10.1257/aer.20190623.appx
    Download Restriction: no

    File URL: https://www.aeaweb.org/doi/10.1257/aer.20190623.ds
    Download Restriction: Access to full text is restricted to AEA members and institutional subscribers.

    File URL: https://libkey.io/10.1257/aer.20190623?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Roth, Alvin E. & Erev, Ido, 1995. "Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term," Games and Economic Behavior, Elsevier, vol. 8(1), pages 164-212.
    2. David J. Cooper & Kai-Uwe K?hn, 2014. "Communication, Renegotiation, and the Scope for Collusion," American Economic Journal: Microeconomics, American Economic Association, vol. 6(2), pages 247-278, May.
    3. Maskin, Eric & Tirole, Jean, 1988. "A Theory of Dynamic Oligopoly, II: Price Competition, Kinked Demand Curves, and Edgeworth Cycles," Econometrica, Econometric Society, vol. 56(3), pages 571-599, May.
    4. Waltman, Ludo & Kaymak, Uzay, 2008. "Q-learning agents in a Cournot oligopoly model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(10), pages 3275-3293, October.
    5. Yuliy Sannikov & Andrzej Skrzypacz, 2007. "Impossibility of Collusion under Imperfect Monitoring with Flexible Production," American Economic Review, American Economic Association, vol. 97(5), pages 1794-1823, December.
    6. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    7. Rajeev K. Tyagi, 1999. "On the relationship between product substitutability and tacit collusion," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 20(6), pages 293-298.
    8. Pedro Dal Bó & Guillaume R. Fréchette, 2018. "On the Determinants of Cooperation in Infinitely Repeated Games: A Survey," Journal of Economic Literature, American Economic Association, vol. 56(1), pages 60-114, March.
    9. Huck, Steffen & Normann, Hans-Theo & Oechssler, Jorg, 2004. "Two are few and four are many: number effects in experimental oligopolies," Journal of Economic Behavior & Organization, Elsevier, vol. 53(4), pages 435-446, April.
    10. Leufkens, Kasper & Peeters, Ronald, 2011. "Price dynamics and collusion under short-run price commitments," International Journal of Industrial Organization, Elsevier, vol. 29(1), pages 134-153, January.
    11. David Silver & Julian Schrittwieser & Karen Simonyan & Ioannis Antonoglou & Aja Huang & Arthur Guez & Thomas Hubert & Lucas Baker & Matthew Lai & Adrian Bolton & Yutian Chen & Timothy Lillicrap & Fan , 2017. "Mastering the game of Go without human knowledge," Nature, Nature, vol. 550(7676), pages 354-359, October.
    12. Drew Fudenberg & David K. Levine, 2016. "Whither Game Theory? Towards a Theory of Learning in Games," Journal of Economic Perspectives, American Economic Association, vol. 30(4), pages 151-170, Fall.
    13. Nirvikar Singh & Xavier Vives, 1984. "Price and Quantity Competition in a Differentiated Duopoly," RAND Journal of Economics, The RAND Corporation, vol. 15(4), pages 546-554, Winter.
    14. Barlo, Mehmet & Carmona, Guilherme & Sabourian, Hamid, 2016. "Bounded memory Folk Theorem," Journal of Economic Theory, Elsevier, vol. 163(C), pages 728-774.
    15. Drew Fudenberg & David K Levine, 2016. "Whither Game Theory?," Levine's Working Paper Archive 786969000000001307, David K. Levine.
    16. Ho, Teck H. & Camerer, Colin F. & Chong, Juin-Kuan, 2007. "Self-tuning experience weighted attraction learning in games," Journal of Economic Theory, Elsevier, vol. 133(1), pages 177-198, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emilio Calvano & Giacomo Calzolari & Vincenzo Denicolò & Sergio Pastorello, 2019. "Algorithmic Pricing What Implications for Competition Policy?," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 55(1), pages 155-171, August.
    2. Dolgopolov, Arthur, 2024. "Reinforcement learning in a prisoner's dilemma," Games and Economic Behavior, Elsevier, vol. 144(C), pages 84-103.
    3. Todd Guilfoos & Andreas Duus Pape, 2020. "Estimating Case-Based Learning," Games, MDPI, vol. 11(3), pages 1-25, September.
    4. Terry E. Daniel & Eyran J. Gisches & Amnon Rapoport, 2009. "Departure Times in Y-Shaped Traffic Networks with Multiple Bottlenecks," American Economic Review, American Economic Association, vol. 99(5), pages 2149-2176, December.
    5. Dürsch, Peter & Kolb, Albert & Oechssler, Jörg & Schipper, Burkhard C., 2005. "Rage Against the Machines: How Subjects Learn to Play Against Computers," Bonn Econ Discussion Papers 31/2005, University of Bonn, Bonn Graduate School of Economics (BGSE).
    6. Asim Ansari & Ricardo Montoya & Oded Netzer, 2012. "Dynamic learning in behavioral games: A hidden Markov mixture of experts approach," Quantitative Marketing and Economics (QME), Springer, vol. 10(4), pages 475-503, December.
    7. Jieyao Ding & Andreas Nicklisch, 2013. "On the Impulse in Impulse Learning," Discussion Paper Series of the Max Planck Institute for Research on Collective Goods 2013_02, Max Planck Institute for Research on Collective Goods.
    8. Chernov, G. & Susin, I., 2019. "Models of learning in games: An overview," Journal of the New Economic Association, New Economic Association, vol. 44(4), pages 77-125.
    9. Sebastian J. Goerg & Tibor Neugebauer & Abdolkarim Sadrieh, 2016. "Impulse Response Dynamics in Weakest Link Games," German Economic Review, Verein für Socialpolitik, vol. 17(3), pages 284-297, August.
    10. Marco LiCalzi & Roland Mühlenbernd, 2022. "Feature-weighted categorized play across symmetric games," Experimental Economics, Springer;Economic Science Association, vol. 25(3), pages 1052-1078, June.
    11. Bigoni, Maria & Fort, Margherita, 2013. "Information and learning in oligopoly: An experiment," Games and Economic Behavior, Elsevier, vol. 81(C), pages 192-214.
    12. Paolo Crosetto & Alexia Gaudeul, 2017. "Choosing not to compete: Can firms maintain high prices by confusing consumers?," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 26(4), pages 897-922, December.
    13. Timo Klein, 2021. "Autonomous algorithmic collusion: Q‐learning under sequential pricing," RAND Journal of Economics, RAND Corporation, vol. 52(3), pages 538-558, September.
    14. Arthur Charpentier & Romuald Élie & Carl Remlinger, 2023. "Reinforcement Learning in Economics and Finance," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 425-462, June.
    15. Hans-Theo Normann & Martin Sternberg, 2021. "Human-Algorithm Interaction: Algorithmic Pricing in Hybrid Laboratory Markets," Discussion Paper Series of the Max Planck Institute for Research on Collective Goods 2021_11, Max Planck Institute for Research on Collective Goods, revised 13 Apr 2022.
    16. Dalton, Michael & Landry, Peter, 2020. "‘Overattention’ to first-hand experience in hiring decisions: Evidence from professional basketball," Journal of Economic Behavior & Organization, Elsevier, vol. 175(C), pages 98-113.
    17. Gonzalo Ballestero, 2022. "Collusion and Artificial Intelligence: A Computational Experiment with Sequential Pricing Algorithms under Stochastic Costs," Working Papers 118, Red Nacional de Investigadores en Economía (RedNIE).
    18. Jan Potters & Sigrid Suetens, 2013. "Oligopoly Experiments In The Current Millennium," Journal of Economic Surveys, Wiley Blackwell, vol. 27(3), pages 439-460, July.
    19. Maria Bigoni & Jan Potters & Giancarlo Spagnolo, 2019. "Frequency of interaction, communication and collusion: an experiment," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 68(4), pages 827-844, November.
    20. Chmura, Thorsten & Goerg, Sebastian J. & Selten, Reinhard, 2012. "Learning in experimental 2×2 games," Games and Economic Behavior, Elsevier, vol. 76(1), pages 44-73.

    More about this item

    JEL classification:

    • D21 - Microeconomics - - Production and Organizations - - - Firm Behavior: Theory
    • D43 - Microeconomics - - Market Structure, Pricing, and Design - - - Oligopoly and Other Forms of Market Imperfection
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • L12 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Monopoly; Monopolization Strategies
    • L13 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Oligopoly and Other Imperfect Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aea:aecrev:v:110:y:2020:i:10:p:3267-97. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael P. Albert (email available below). General contact details of provider: https://edirc.repec.org/data/aeaaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.