IDEAS home Printed from https://ideas.repec.org/a/bla/jemstr/v33y2024i2p276-304.html
   My bibliography  Save this article

The impact of artificial intelligence design on pricing

Author

Listed:
  • John Asker
  • Chaim Fershtman
  • Ariel Pakes

Abstract

The behavior of artificial intelligence (AI) algorithms is shaped by how they learn about their environment. We compare the prices generated by AIs that use different learning protocols when there is market interaction. Asynchronous learning occurs when the AI only learns about the return from the action it took. Synchronous learning occurs when the AI conducts counterfactuals to learn about the returns it would have earned had it taken an alternative action. The two lead to markedly different market prices. When future profits are not given positive weight by the AI, (perfect) synchronous updating leads to competitive pricing, while asynchronous can lead to pricing close to monopoly levels. We investigate how this result varies when either counterfactuals can only be calculated imperfectly and/or when the AI places a weight on future profits. Lastly, we investigate performance differences between offline and online play.

Suggested Citation

  • John Asker & Chaim Fershtman & Ariel Pakes, 2024. "The impact of artificial intelligence design on pricing," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 33(2), pages 276-304, March.
  • Handle: RePEc:bla:jemstr:v:33:y:2024:i:2:p:276-304
    DOI: 10.1111/jems.12516
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jems.12516
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jems.12516?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ariel Pakes & Paul McGuire, 1994. "Computing Markov-Perfect Nash Equilibria: Numerical Implications of a Dynamic Differentiated Product Model," RAND Journal of Economics, The RAND Corporation, vol. 25(4), pages 555-589, Winter.
    2. Annie Liang, 2019. "Games of Incomplete Information Played By Statisticians," Papers 1910.07018, arXiv.org, revised Jul 2020.
    3. Diego Aparicio & Zachary Metzman & Roberto Rigobon, 2021. "The Pricing Strategies of Online Grocery Retailers," NBER Working Papers 28639, National Bureau of Economic Research, Inc.
    4. Ajay Agrawal & Joshua Gans & Avi Goldfarb, 2019. "The Economics of Artificial Intelligence: An Agenda," NBER Books, National Bureau of Economic Research, Inc, number agra-1, January.
    5. Pakes, Ariel & McGuire, Paul, 2001. "Stochastic Algorithms, Symmetric Markov Perfect Equilibrium, and the 'Curse' of Dimensionality," Econometrica, Econometric Society, vol. 69(5), pages 1261-1281, September.
    6. Vivek Farias & Denis Saure & Gabriel Y. Weintraub, 2012. "An approximate dynamic programming approach to solving dynamic oligopoly models," RAND Journal of Economics, RAND Corporation, vol. 43(2), pages 253-282, June.
    7. Calvano, Emilio & Calzolari, Giacomo & Denicoló, Vincenzo & Pastorello, Sergio, 2021. "Algorithmic collusion with imperfect monitoring," International Journal of Industrial Organization, Elsevier, vol. 79(C).
    8. Louis Kaplow, 2013. "Competition Policy and Price Fixing," Economics Books, Princeton University Press, edition 1, volume 1, number 10005.
    9. Chaim Fershtman & Ariel Pakes, 2012. "Dynamic Games with Asymmetric Information: A Framework for Empirical Work," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 127(4), pages 1611-1661.
    10. Stephanie Assad & Emilio Calvano & Giacomo Calzolari & Robert Clark & Vincenzo Denicolò & Daniel Ershov & Justin Johnson & Sergio Pastorello & Andrew Rhodes & Lei Xu & Matthijs Wildenbeest, 2021. "Autonomous algorithmic collusion: economic research and policy implications," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 37(3), pages 459-478.
    11. Justin P. Johnson & Andrew Rhodes & Matthijs Wildenbeest, 2023. "Platform Design When Sellers Use Pricing Algorithms," Econometrica, Econometric Society, vol. 91(5), pages 1841-1879, September.
    12. Maskin, Eric & Tirole, Jean, 1988. "A Theory of Dynamic Oligopoly, II: Price Competition, Kinked Demand Curves, and Edgeworth Cycles," Econometrica, Econometric Society, vol. 56(3), pages 571-599, May.
    13. D. Fudenberg & D. K. Levine, 2017. "Whither game theory? Towards a theory oflearning in games," Voprosy Ekonomiki, NP Voprosy Ekonomiki, issue 5.
    14. Ulrich Schwalbe, 2018. "Algorithms, Machine Learning, And Collusion," Journal of Competition Law and Economics, Oxford University Press, vol. 14(4), pages 568-607.
    15. Emilio Calvano & Giacomo Calzolari & Vincenzo Denicolò & Sergio Pastorello, 2020. "Artificial Intelligence, Algorithmic Pricing, and Collusion," American Economic Review, American Economic Association, vol. 110(10), pages 3267-3297, October.
    16. Stephanie Assad & Robert Clark & Daniel Ershov & Lei Xu, 2020. "Algorithmic Pricing and Competition: Empirical Evidence from the German Retail Gasoline Market," CESifo Working Paper Series 8521, CESifo.
    17. Jeanine Miklós-Thal & Catherine Tucker, 2019. "Collusion by Algorithm: Does Better Demand Prediction Facilitate Coordination Between Sellers?," Management Science, INFORMS, vol. 65(4), pages 1552-1561, April.
    18. Sergiu Hart & Andreu Mas-Colell, 2013. "Uncoupled Dynamics Do Not Lead To Nash Equilibrium," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 7, pages 153-163, World Scientific Publishing Co. Pte. Ltd..
    19. Maskin, Eric & Tirole, Jean, 2001. "Markov Perfect Equilibrium: I. Observable Actions," Journal of Economic Theory, Elsevier, vol. 100(2), pages 191-219, October.
    20. Joseph E Harrington, 2018. "Developing Competition Law For Collusion By Autonomous Artificial Agents," Journal of Competition Law and Economics, Oxford University Press, vol. 14(3), pages 331-363.
    21. Zach Y. Brown & Alexander MacKay, 2023. "Competition in Pricing Algorithms," American Economic Journal: Microeconomics, American Economic Association, vol. 15(2), pages 109-156, May.
    22. Pai, Mallesh & Hansen, Karsten, 2020. "Algorithmic Collusion: Supra-competitive Prices via Independent Algorithms," CEPR Discussion Papers 14372, C.E.P.R. Discussion Papers.
    23. Milgrom, Paul & Roberts, John, 1991. "Adaptive and sophisticated learning in normal form games," Games and Economic Behavior, Elsevier, vol. 3(1), pages 82-100, February.
    24. Nicolas Eschenbaum & Filip Mellgren & Philipp Zahn, 2022. "Robust Algorithmic Collusion," Papers 2201.00345, arXiv.org, revised Jan 2022.
    25. Arnoud V. den Boer & Janusz M. Meylahn & Maarten Pieter Schinkel, 2022. "Artificial Collusion: Examining Supracompetitive Pricing by Q-learning Algorithms," Tinbergen Institute Discussion Papers 22-067/VII, Tinbergen Institute.
    26. Martin, Simon & Rasch, Alexander, 2022. "Collusion by algorithm: The role of unobserved actions," DICE Discussion Papers 382, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    27. Simon Martin & Alexander Rasch, 2022. "Collusion by Algorithm: The Role of Unobserved Actions," CESifo Working Paper Series 9629, CESifo.
    28. Mitsuru Igami, 2020. "Artificial intelligence as structural estimation: Deep Blue, Bonanza, and AlphaGo," The Econometrics Journal, Royal Economic Society, vol. 23(3), pages 1-24.
    29. John Asker & Chaim Fershtman & Jihye Jeon & Ariel Pakes, 2020. "A computational framework for analyzing dynamic auctions: The market impact of information sharing," RAND Journal of Economics, RAND Corporation, vol. 51(3), pages 805-839, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcel Wieting & Geza Sapi, 2021. "Algorithms in the Marketplace: An Empirical Analysis of Automated Pricing in E-Commerce," Working Papers 21-06, NET Institute.
    2. Martin, Simon & Rasch, Alexander, 2022. "Collusion by algorithm: The role of unobserved actions," DICE Discussion Papers 382, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    3. Simon Martin & Alexander Rasch, 2022. "Collusion by Algorithm: The Role of Unobserved Actions," CESifo Working Paper Series 9629, CESifo.
    4. Werner, Tobias, 2021. "Algorithmic and human collusion," DICE Discussion Papers 372, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    5. Gonzalo Ballestero, 2021. "Collusion and Artificial Intelligence: A computational experiment with sequential pricing algorithms under stochastic costs," Young Researchers Working Papers 1, Universidad de San Andres, Departamento de Economia, revised Oct 2022.
    6. Gonzalo Ballestero, 2022. "Collusion and Artificial Intelligence: A Computational Experiment with Sequential Pricing Algorithms under Stochastic Costs," Working Papers 118, Red Nacional de Investigadores en Economía (RedNIE).
    7. Werner, Tobias, 2023. "Algorithmic and Human Collusion," VfS Annual Conference 2023 (Regensburg): Growth and the "sociale Frage" 277573, Verein für Socialpolitik / German Economic Association.
    8. Martin, Simon & Rasch, Alexander, 2024. "Demand forecasting, signal precision, and collusion with hidden actions," International Journal of Industrial Organization, Elsevier, vol. 92(C).
    9. Aleksandar B. Todorov, 2022. "Algorithmic pricing and concerted behaviour – competitive challenges?," Economic Thought journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 1, pages 90-107.
    10. Bernhard Kasberger & Simon Martin & Hans-Theo Normann & Tobias Werner, 2024. "Algorithmic Cooperation," CESifo Working Paper Series 11124, CESifo.
    11. Timo Klein, 2021. "Autonomous algorithmic collusion: Q‐learning under sequential pricing," RAND Journal of Economics, RAND Corporation, vol. 52(3), pages 538-558, September.
    12. Justin P. Johnson & Andrew Rhodes & Matthijs Wildenbeest, 2023. "Platform Design When Sellers Use Pricing Algorithms," Econometrica, Econometric Society, vol. 91(5), pages 1841-1879, September.
    13. Zhang Xu & Wei Zhao, 2024. "On Mechanism Underlying Algorithmic Collusion," Papers 2409.01147, arXiv.org.
    14. Epivent, Andréa & Lambin, Xavier, 2024. "On algorithmic collusion and reward–punishment schemes," Economics Letters, Elsevier, vol. 237(C).
    15. Fourberg, Niklas & Marques-Magalhaes, Katrin & Wiewiorra, Lukas, 2022. "They are among us: Pricing behavior of algorithms in the field," WIK Working Papers 6, WIK Wissenschaftliches Institut für Infrastruktur und Kommunikationsdienste GmbH, Bad Honnef.
    16. Normann, Hans-Theo & Sternberg, Martin, 2023. "Human-algorithm interaction: Algorithmic pricing in hybrid laboratory markets," European Economic Review, Elsevier, vol. 152(C).
    17. Abada, Ibrahim & Lambin, Xavier & Tchakarov, Nikolay, 2024. "Collusion by mistake: Does algorithmic sophistication drive supra-competitive profits?," European Journal of Operational Research, Elsevier, vol. 318(3), pages 927-953.
    18. Dolgopolov, Arthur, 2024. "Reinforcement learning in a prisoner's dilemma," Games and Economic Behavior, Elsevier, vol. 144(C), pages 84-103.
    19. John Asker & Chaim Fershtman & Ariel Pakes, 2021. "Artificial Intelligence and Pricing: The Impact of Algorithm Design," NBER Working Papers 28535, National Bureau of Economic Research, Inc.
    20. Ivan Conjeaud, 2023. "Algorithmic collusion under competitive design," Papers 2312.02644, arXiv.org, revised Sep 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jemstr:v:33:y:2024:i:2:p:276-304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.kellogg.northwestern.edu/research/journals/JEMS/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.