IDEAS home Printed from https://ideas.repec.org/a/bla/popmgt/v32y2023i4p1169-1186.html
   My bibliography  Save this article

Data‐driven collusion and competition in a pricing duopoly with multinomial logit demand

Author

Listed:
  • Thomas Loots
  • Arnoud V. den Boer

Abstract

We consider dynamic pricing and demand learning in a duopoly with multinomial logit demand, both from the perspective where firms compete against each other and from the perspective where firms aim to collude to increase revenues. We show that joint‐revenue maximization is not always beneficial to both firms compared to the Nash equilibrium, and show that several other axiomatic notions of collusion can be constructed that are always beneficial to both firms and a threat to consumer welfare. Next, we construct a price algorithm and prove that it learns to charge supra‐competitive prices if deployed by both firms, and learns to respond optimally against a class of competitive algorithms. Our algorithm includes a mechanism to infer demand observations from the competitor's price path, so that our algorithm can operate in a setting where prices are public but demand is private information. Our work contributes to the understanding of well‐performing price policies in a competitive multi‐agent setting, and shows that collusion by algorithms is possible and deserves the attention of lawmakers and competition policy regulators.

Suggested Citation

  • Thomas Loots & Arnoud V. den Boer, 2023. "Data‐driven collusion and competition in a pricing duopoly with multinomial logit demand," Production and Operations Management, Production and Operations Management Society, vol. 32(4), pages 1169-1186, April.
  • Handle: RePEc:bla:popmgt:v:32:y:2023:i:4:p:1169-1186
    DOI: 10.1111/poms.13919
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/poms.13919
    Download Restriction: no

    File URL: https://libkey.io/10.1111/poms.13919?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Arnoud V. den Boer & Janusz M. Meylahn & Maarten Pieter Schinkel, 2022. "Artificial Collusion: Examining Supracompetitive Pricing by Q-learning Algorithms," Tinbergen Institute Discussion Papers 22-067/VII, Tinbergen Institute.
    2. Qi (George) Chen & Stefanus Jasin & Izak Duenyas, 2019. "Nonparametric Self-Adjusting Control for Joint Learning and Optimization of Multiproduct Pricing with Finite Resource Capacity," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 601-631, May.
    3. Thierry Delahaye & Rodrigo Acuna-Agost & Nicolas Bondoux & Anh-Quan Nguyen & Mourad Boudia, 2017. "Data-driven models for itinerary preferences of air travelers and application for dynamic pricing optimization," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 16(6), pages 621-639, December.
    4. Hongmin Li & Woonghee Tim Huh, 2011. "Pricing Multiple Products with the Multinomial Logit and Nested Logit Models: Concavity and Implications," Manufacturing & Service Operations Management, INFORMS, vol. 13(4), pages 549-563, October.
    5. N. Bora Keskin & Assaf Zeevi, 2014. "Dynamic Pricing with an Unknown Demand Model: Asymptotically Optimal Semi-Myopic Policies," Operations Research, INFORMS, vol. 62(5), pages 1142-1167, October.
    6. Omar Besbes & Assaf Zeevi, 2015. "On the (Surprising) Sufficiency of Linear Models for Dynamic Pricing with Demand Learning," Management Science, INFORMS, vol. 61(4), pages 723-739, April.
    7. Iwan Bos & Joseph E. Harrington, Jr, 2010. "Endogenous cartel formation with heterogeneous firms," RAND Journal of Economics, RAND Corporation, vol. 41(1), pages 92-117, March.
    8. Fischer, Christian & Normann, Hans-Theo, 2019. "Collusion and bargaining in asymmetric Cournot duopoly—An experiment," European Economic Review, Elsevier, vol. 111(C), pages 360-379.
    9. Arnoud V. den Boer & Bert Zwart, 2014. "Simultaneously Learning and Optimizing Using Controlled Variance Pricing," Management Science, INFORMS, vol. 60(3), pages 770-783, March.
    10. Guillermo Gallego & Huseyin Topaloglu, 2019. "Revenue Management and Pricing Analytics," International Series in Operations Research and Management Science, Springer, number 978-1-4939-9606-3, January.
    11. Emilio Calvano & Giacomo Calzolari & Vincenzo Denicolò & Sergio Pastorello, 2020. "Artificial Intelligence, Algorithmic Pricing, and Collusion," American Economic Review, American Economic Association, vol. 110(10), pages 3267-3297, October.
    12. Hongmin Li & Scott Webster & Nicholas Mason & Karl Kempf, 2019. "Product-Line Pricing Under Discrete Mixed Multinomial Logit Demand," Service Science, INFORMS, vol. 21(1), pages 14-28, January.
    13. Arnoud V. den Boer, 2014. "Dynamic Pricing with Multiple Products and Partially Specified Demand Distribution," Mathematics of Operations Research, INFORMS, vol. 39(3), pages 863-888, August.
    14. Zizhuo Wang & Shiming Deng & Yinyu Ye, 2014. "Close the Gaps: A Learning-While-Doing Algorithm for Single-Product Revenue Management Problems," Operations Research, INFORMS, vol. 62(2), pages 318-331, April.
    15. Ulrich Schwalbe, 2018. "Algorithms, Machine Learning, And Collusion," Journal of Competition Law and Economics, Oxford University Press, vol. 14(4), pages 568-607.
    16. Josef Broder & Paat Rusmevichientong, 2012. "Dynamic Pricing Under a General Parametric Choice Model," Operations Research, INFORMS, vol. 60(4), pages 965-980, August.
    17. W. Zachary Rayfield & Paat Rusmevichientong & Huseyin Topaloglu, 2015. "Approximation Methods for Pricing Problems Under the Nested Logit Model with Price Bounds," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 335-357, May.
    18. Wang Chi Cheung & David Simchi-Levi & He Wang, 2017. "Technical Note—Dynamic Pricing and Demand Learning with Limited Price Experimentation," Operations Research, INFORMS, vol. 65(6), pages 1722-1731, December.
    19. J. Michael Harrison & N. Bora Keskin & Assaf Zeevi, 2012. "Bayesian Dynamic Pricing Policies: Learning and Earning Under a Binary Prior Distribution," Management Science, INFORMS, vol. 58(3), pages 570-586, March.
    20. Mark Broadie & Deniz Cicek & Assaf Zeevi, 2011. "General Bounds and Finite-Time Improvement for the Kiefer-Wolfowitz Stochastic Approximation Algorithm," Operations Research, INFORMS, vol. 59(5), pages 1211-1224, October.
    21. Omar Besbes & Assaf Zeevi, 2009. "Dynamic Pricing Without Knowing the Demand Function: Risk Bounds and Near-Optimal Algorithms," Operations Research, INFORMS, vol. 57(6), pages 1407-1420, December.
    22. William L. Cooper & Tito Homem-de-Mello & Anton J. Kleywegt, 2015. "Learning and Pricing with Models That Do Not Explicitly Incorporate Competition," Operations Research, INFORMS, vol. 63(1), pages 86-103, February.
    23. Yalç{i}n Akçay & Harihara Prasad Natarajan & Susan H. Xu, 2010. "Joint Dynamic Pricing of Multiple Perishable Products Under Consumer Choice," Management Science, INFORMS, vol. 56(8), pages 1345-1361, August.
    24. Arnoud V. den Boer & Bert Zwart, 2015. "Dynamic Pricing and Learning with Finite Inventories," Operations Research, INFORMS, vol. 63(4), pages 965-978, August.
    25. Joseph E Harrington, 2018. "Developing Competition Law For Collusion By Autonomous Artificial Agents," Journal of Competition Law and Economics, Oxford University Press, vol. 14(3), pages 331-363.
    26. N. Bora Keskin & Assaf Zeevi, 2017. "Chasing Demand: Learning and Earning in a Changing Environment," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 277-307, May.
    27. Constantinos Maglaras & Joern Meissner, 2006. "Dynamic Pricing Strategies for Multiproduct Revenue Management Problems," Manufacturing & Service Operations Management, INFORMS, vol. 8(2), pages 136-148, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dubus, Antoine, 2024. "Behavior-based algorithmic pricing," Information Economics and Policy, Elsevier, vol. 66(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Xiangyu & Zhang, Jianghua & Hu, Jian-Qiang & Hu, Jiaqiao, 2024. "Nonparametric multi-product dynamic pricing with demand learning via simultaneous price perturbation," European Journal of Operational Research, Elsevier, vol. 319(1), pages 191-205.
    2. Yiwei Chen & Cong Shi, 2023. "Network revenue management with online inverse batch gradient descent method," Production and Operations Management, Production and Operations Management Society, vol. 32(7), pages 2123-2137, July.
    3. Boxiao Chen & Xiuli Chao & Cong Shi, 2021. "Nonparametric Learning Algorithms for Joint Pricing and Inventory Control with Lost Sales and Censored Demand," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 726-756, May.
    4. Qi Feng & J. George Shanthikumar, 2022. "Developing operations management data analytics," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4544-4557, December.
    5. Athanassios N. Avramidis & Arnoud V. Boer, 2021. "Dynamic pricing with finite price sets: a non-parametric approach," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(1), pages 1-34, August.
    6. Huashuai Qu & Ilya O. Ryzhov & Michael C. Fu & Eric Bergerson & Megan Kurka & Ludek Kopacek, 2020. "Learning Demand Curves in B2B Pricing: A New Framework and Case Study," Production and Operations Management, Production and Operations Management Society, vol. 29(5), pages 1287-1306, May.
    7. Stefanus Jasin, 2014. "Reoptimization and Self-Adjusting Price Control for Network Revenue Management," Operations Research, INFORMS, vol. 62(5), pages 1168-1178, October.
    8. Yang, Chaolin & Xiong, Yi, 2020. "Nonparametric advertising budget allocation with inventory constraint," European Journal of Operational Research, Elsevier, vol. 285(2), pages 631-641.
    9. den Boer, Arnoud V., 2015. "Tracking the market: Dynamic pricing and learning in a changing environment," European Journal of Operational Research, Elsevier, vol. 247(3), pages 914-927.
    10. Ruben Geer & Arnoud V. Boer & Christopher Bayliss & Christine S. M. Currie & Andria Ellina & Malte Esders & Alwin Haensel & Xiao Lei & Kyle D. S. Maclean & Antonio Martinez-Sykora & Asbjørn Nilsen Ris, 2019. "Dynamic pricing and learning with competition: insights from the dynamic pricing challenge at the 2017 INFORMS RM & pricing conference," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 18(3), pages 185-203, June.
    11. Woonghee Tim Huh & Michael Jong Kim & Meichun Lin, 2022. "Bayesian dithering for learning: Asymptotically optimal policies in dynamic pricing," Production and Operations Management, Production and Operations Management Society, vol. 31(9), pages 3576-3593, September.
    12. Wang Chi Cheung & David Simchi-Levi & He Wang, 2017. "Technical Note—Dynamic Pricing and Demand Learning with Limited Price Experimentation," Operations Research, INFORMS, vol. 65(6), pages 1722-1731, December.
    13. Sentao Miao & Xi Chen & Xiuli Chao & Jiaxi Liu & Yidong Zhang, 2022. "Context‐based dynamic pricing with online clustering," Production and Operations Management, Production and Operations Management Society, vol. 31(9), pages 3559-3575, September.
    14. Karsten T. Hansen & Kanishka Misra & Mallesh M. Pai, 2021. "Frontiers: Algorithmic Collusion: Supra-competitive Prices via," Marketing Science, INFORMS, vol. 40(1), pages 1-12, January.
    15. Xiao, Baichun & Yang, Wei, 2021. "A Bayesian learning model for estimating unknown demand parameter in revenue management," European Journal of Operational Research, Elsevier, vol. 293(1), pages 248-262.
    16. Ruben van de Geer & Arnoud V. den Boer & Christopher Bayliss & Christine Currie & Andria Ellina & Malte Esders & Alwin Haensel & Xiao Lei & Kyle D. S. Maclean & Antonio Martinez-Sykora & Asbj{o}rn Nil, 2018. "Dynamic Pricing and Learning with Competition: Insights from the Dynamic Pricing Challenge at the 2017 INFORMS RM & Pricing Conference," Papers 1804.03219, arXiv.org.
    17. Jianqing Fan & Yongyi Guo & Mengxin Yu, 2024. "Policy Optimization Using Semiparametric Models for Dynamic Pricing," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 119(545), pages 552-564, January.
    18. Arnoud V. den Boer & Bert Zwart, 2015. "Dynamic Pricing and Learning with Finite Inventories," Operations Research, INFORMS, vol. 63(4), pages 965-978, August.
    19. Xi Chen & Jianjun Gao & Dongdong Ge & Zizhuo Wang, 2022. "Bayesian dynamic learning and pricing with strategic customers," Production and Operations Management, Production and Operations Management Society, vol. 31(8), pages 3125-3142, August.
    20. Doan, Xuan Vinh & Lei, Xiao & Shen, Siqian, 2020. "Pricing of reusable resources under ambiguous distributions of demand and service time with emerging applications," European Journal of Operational Research, Elsevier, vol. 282(1), pages 235-251.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:popmgt:v:32:y:2023:i:4:p:1169-1186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1937-5956 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.