IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v244y2024ics0165176524004956.html
   My bibliography  Save this article

The effect of demand variability on the adoption and design of a third party’s pricing algorithm

Author

Listed:
  • Harrington, Joseph E.

Abstract

Consider a data analytics company supplying a pricing algorithm that adjusts price to a changing demand state. For this setting, I show the pricing algorithm is designed and priced so that higher demand variability results in more firms adopting the pricing algorithm. Furthermore, there is a critical threshold for demand variability whereby there is complete or near-complete adoption of the pricing algorithm. While widespread adoption of a third party’s pricing algorithm among competitors has raised concerns of collusive conduct, it could instead reflect a strong efficiency delivered by a third party.

Suggested Citation

  • Harrington, Joseph E., 2024. "The effect of demand variability on the adoption and design of a third party’s pricing algorithm," Economics Letters, Elsevier, vol. 244(C).
  • Handle: RePEc:eee:ecolet:v:244:y:2024:i:c:s0165176524004956
    DOI: 10.1016/j.econlet.2024.112011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176524004956
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2024.112011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephanie Assad & Robert Clark & Daniel Ershov & Lei Xu, 2024. "Algorithmic Pricing and Competition: Empirical Evidence from the German Retail Gasoline Market," Journal of Political Economy, University of Chicago Press, vol. 132(3), pages 723-771.
    2. Joseph E. Harrington, 2022. "The Effect of Outsourcing Pricing Algorithms on Market Competition," Management Science, INFORMS, vol. 68(9), pages 6889-6906, September.
    3. Justin P. Johnson & Andrew Rhodes & Matthijs Wildenbeest, 2023. "Platform Design When Sellers Use Pricing Algorithms," Econometrica, Econometric Society, vol. 91(5), pages 1841-1879, September.
    4. Emilio Calvano & Giacomo Calzolari & Vincenzo Denicolò & Sergio Pastorello, 2020. "Artificial Intelligence, Algorithmic Pricing, and Collusion," American Economic Review, American Economic Association, vol. 110(10), pages 3267-3297, October.
    5. Eshwar Ram Arunachaleswaran & Natalie Collina & Sampath Kannan & Aaron Roth & Juba Ziani, 2024. "Algorithmic Collusion Without Threats," Papers 2409.03956, arXiv.org, revised Dec 2024.
    6. Zach Y. Brown & Alexander MacKay, 2023. "Competition in Pricing Algorithms," American Economic Journal: Microeconomics, American Economic Association, vol. 15(2), pages 109-156, May.
    7. Waltman, Ludo & Kaymak, Uzay, 2008. "Q-learning agents in a Cournot oligopoly model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(10), pages 3275-3293, October.
    8. Epivent, Andréa & Lambin, Xavier, 2024. "On algorithmic collusion and reward–punishment schemes," Economics Letters, Elsevier, vol. 237(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abada, Ibrahim & Lambin, Xavier & Tchakarov, Nikolay, 2024. "Collusion by mistake: Does algorithmic sophistication drive supra-competitive profits?," European Journal of Operational Research, Elsevier, vol. 318(3), pages 927-953.
    2. Epivent, Andréa & Lambin, Xavier, 2024. "On algorithmic collusion and reward–punishment schemes," Economics Letters, Elsevier, vol. 237(C).
    3. Inkoo Cho & Noah Williams, 2024. "Collusive Outcomes Without Collusion," Papers 2403.07177, arXiv.org.
    4. Martin, Simon & Rasch, Alexander, 2022. "Collusion by algorithm: The role of unobserved actions," DICE Discussion Papers 382, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    5. Calvano, Emilio & Calzolari, Giacomo & Denicoló, Vincenzo & Pastorello, Sergio, 2021. "Algorithmic collusion with imperfect monitoring," International Journal of Industrial Organization, Elsevier, vol. 79(C).
    6. Martin, Simon & Rasch, Alexander, 2024. "Demand forecasting, signal precision, and collusion with hidden actions," International Journal of Industrial Organization, Elsevier, vol. 92(C).
    7. Justin P. Johnson & Andrew Rhodes & Matthijs Wildenbeest, 2023. "Platform Design When Sellers Use Pricing Algorithms," Econometrica, Econometric Society, vol. 91(5), pages 1841-1879, September.
    8. Zhang Xu & Wei Zhao, 2024. "On Mechanism Underlying Algorithmic Collusion," Papers 2409.01147, arXiv.org.
    9. John Asker & Chaim Fershtman & Ariel Pakes, 2024. "The impact of artificial intelligence design on pricing," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 33(2), pages 276-304, March.
    10. Fourberg, Niklas & Marques-Magalhaes, Katrin & Wiewiorra, Lukas, 2022. "They are among us: Pricing behavior of algorithms in the field," WIK Working Papers 6, WIK Wissenschaftliches Institut für Infrastruktur und Kommunikationsdienste GmbH, Bad Honnef.
    11. Simon Martin & Alexander Rasch, 2022. "Collusion by Algorithm: The Role of Unobserved Actions," CESifo Working Paper Series 9629, CESifo.
    12. Fourberg, Niklas & Marques Magalhaes, Katrin & Wiewiorra, Lukas, 2023. "They Are Among Us: Pricing Behavior of Algorithms in the Field," 32nd European Regional ITS Conference, Madrid 2023: Realising the digital decade in the European Union – Easier said than done? 277958, International Telecommunications Society (ITS).
    13. Connor Douglas & Foster Provost & Arun Sundararajan, 2024. "Naive Algorithmic Collusion: When Do Bandit Learners Cooperate and When Do They Compete?," Papers 2411.16574, arXiv.org.
    14. Bernhard Kasberger & Simon Martin & Hans-Theo Normann & Tobias Werner, 2024. "Algorithmic Cooperation," CESifo Working Paper Series 11124, CESifo.
    15. Daniele Condorelli & Massimiliano Furlan, 2023. "Cheap Talking Algorithms," Papers 2310.07867, arXiv.org, revised Oct 2024.
    16. Soria, Jorge & Moya, Jorge & Mohazab, Amin, 2023. "Optimal mining in proof-of-work blockchain protocols," Finance Research Letters, Elsevier, vol. 53(C).
    17. Lucila Porto, 2022. "Q-Learning algorithms in a Hotelling model," Asociación Argentina de Economía Política: Working Papers 4587, Asociación Argentina de Economía Política.
    18. Emilio Calvano & Giacomo Calzolari & Vincenzo Denicolò & Sergio Pastorello, 2019. "Algorithmic Pricing What Implications for Competition Policy?," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 55(1), pages 155-171, August.
    19. Bingyan Han, 2021. "Understanding algorithmic collusion with experience replay," Papers 2102.09139, arXiv.org, revised Mar 2021.
    20. Marcel Wieting & Geza Sapi, 2021. "Algorithms in the Marketplace: An Empirical Analysis of Automated Pricing in E-Commerce," Working Papers 21-06, NET Institute.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:244:y:2024:i:c:s0165176524004956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.