IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.15084.html
   My bibliography  Save this paper

Algorithmic Collusion under Observed Demand Shocks

Author

Listed:
  • Zexin Ye

Abstract

When the current demand shock is observable, with a high discount factor, Q-learning agents predominantly learn to implement symmetric rigid pricing, i.e., they charge constant prices across demand states. Under this pricing pattern, supra-competitive profits can still be obtained and are sustained through collusive strategies that effectively punish deviations. This shows that Q-learning agents can successfully overcome the stronger incentives to deviate during the positive demand shocks, and consequently algorithmic collusion persists under observed demand shocks. In contrast, with a medium discount factor, Q-learning agents learn that maintaining high prices during the positive demand shocks is not incentive compatible and instead proactively charge lower prices to decrease the temptation for deviating, while maintaining relatively high prices during the negative demand shocks. As a result, the countercyclical pricing pattern becomes predominant, aligning with the theoretical prediction of Rotemberg and Saloner (1986). These findings highlight how Q-learning algorithms can both adapt pricing strategies and develop tacit collusion in response to complex market conditions.

Suggested Citation

  • Zexin Ye, 2025. "Algorithmic Collusion under Observed Demand Shocks," Papers 2502.15084, arXiv.org.
  • Handle: RePEc:arx:papers:2502.15084
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.15084
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.15084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.