IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v302y2022i3p874-891.html
   My bibliography  Save this article

An algorithm selection approach for the flexible job shop scheduling problem: Choosing constraint programming solvers through machine learning

Author

Listed:
  • Müller, David
  • Müller, Marcus G.
  • Kress, Dominik
  • Pesch, Erwin

Abstract

Constraint programming solvers are known to perform remarkably well for most scheduling problems. However, when comparing the performance of different available solvers, there is usually no clear winner over all relevant problem instances. This gives rise to the question of how to select a promising solver when knowing the concrete instance to be solved. In this article, we aim to provide first insights into this question for the flexible job shop scheduling problem. We investigate relative performance differences among five constraint programming solvers on problem instances taken from the literature as well as randomly generated problem instances. These solvers include commercial and non-commercial software and represent the state-of-the-art as identified in the relevant literature. We find that two solvers, the IBM ILOG CPLEX CP Optimizer and Google’s OR-Tools, outperform alternative solvers. These two solvers show complementary strengths regarding their ability to determine provably optimal solutions within practically reasonable time limits and their ability to quickly determine high quality feasible solutions across different test instances. Hence, we leverage the resulting performance complementarity by proposing algorithm selection approaches that predict the best solver for a given problem instance based on instance features or parameters. The approaches are based on two machine learning techniques, decision trees and deep neural networks, in various variants. In a computational study, we analyze the performance of the resulting algorithm selection models and show that our approaches outperform the use of a single solver and should thus be considered as a relevant tool by decision makers in practice.

Suggested Citation

  • Müller, David & Müller, Marcus G. & Kress, Dominik & Pesch, Erwin, 2022. "An algorithm selection approach for the flexible job shop scheduling problem: Choosing constraint programming solvers through machine learning," European Journal of Operational Research, Elsevier, vol. 302(3), pages 874-891.
  • Handle: RePEc:eee:ejores:v:302:y:2022:i:3:p:874-891
    DOI: 10.1016/j.ejor.2022.01.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722000728
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.01.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lunardi, Willian T. & Birgin, Ernesto G. & Ronconi, Débora P. & Voos, Holger, 2021. "Metaheuristics for the online printing shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 293(2), pages 419-441.
    2. David Applegate & William Cook, 1991. "A Computational Study of the Job-Shop Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 3(2), pages 149-156, May.
    3. Stanley B. Gershwin, 2018. "The future of manufacturing systems engineering," International Journal of Production Research, Taylor & Francis Journals, vol. 56(1-2), pages 224-237, January.
    4. Markus Wagner & Marius Lindauer & Mustafa Mısır & Samadhi Nallaperuma & Frank Hutter, 2018. "A case study of algorithm selection for the traveling thief problem," Journal of Heuristics, Springer, vol. 24(3), pages 295-320, June.
    5. Blazewicz, Jacek & Domschke, Wolfgang & Pesch, Erwin, 1996. "The job shop scheduling problem: Conventional and new solution techniques," European Journal of Operational Research, Elsevier, vol. 93(1), pages 1-33, August.
    6. Ezra Wari & Weihang Zhu, 2019. "A Constraint Programming model for food processing industry: a case for an ice cream processing facility," International Journal of Production Research, Taylor & Francis Journals, vol. 57(21), pages 6648-6664, November.
    7. Messelis, Tommy & De Causmaecker, Patrick, 2014. "An automatic algorithm selection approach for the multi-mode resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 233(3), pages 511-528.
    8. Rakovitis, Nikolaos & Li, Dan & Zhang, Nan & Li, Jie & Zhang, Liping & Xiao, Xin, 2022. "Novel approach to energy-efficient flexible job-shop scheduling problems," Energy, Elsevier, vol. 238(PB).
    9. J. Carlier & E. Pinson, 1989. "An Algorithm for Solving the Job-Shop Problem," Management Science, INFORMS, vol. 35(2), pages 164-176, February.
    10. Jacek Blazewicz & Klaus H. Ecker & Erwin Pesch & Günter Schmidt & Malgorzata Sterna & Jan Weglarz, 2019. "Handbook on Scheduling," International Handbooks on Information Systems, Springer, edition 2, number 978-3-319-99849-7, November.
    11. Ulrich Dorndorf & Erwin Pesch & Toàn Phan-Huy, 2002. "Constraint Propagation and Problem Decomposition: A Preprocessing Procedure for the Job Shop Problem," Annals of Operations Research, Springer, vol. 115(1), pages 125-145, September.
    12. Kraus, Mathias & Feuerriegel, Stefan & Oztekin, Asil, 2020. "Deep learning in business analytics and operations research: Models, applications and managerial implications," European Journal of Operational Research, Elsevier, vol. 281(3), pages 628-641.
    13. Bengio, Yoshua & Lodi, Andrea & Prouvost, Antoine, 2021. "Machine learning for combinatorial optimization: A methodological tour d’horizon," European Journal of Operational Research, Elsevier, vol. 290(2), pages 405-421.
    14. Erwin Pesch & Ulrich A. W. Tetzlaff, 1996. "Constraint Propagation Based Scheduling of Job Shops," INFORMS Journal on Computing, INFORMS, vol. 8(2), pages 144-157, May.
    15. Edmund K Burke & Michel Gendreau & Matthew Hyde & Graham Kendall & Gabriela Ochoa & Ender Özcan & Rong Qu, 2013. "Hyper-heuristics: a survey of the state of the art," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(12), pages 1695-1724, December.
    16. Stéphane Dauzère-Pérès & Jan Paulli, 1997. "An integrated approach for modeling and solving the general multiprocessor job-shop scheduling problem using tabu search," Annals of Operations Research, Springer, vol. 70(0), pages 281-306, April.
    17. Joseph Adams & Egon Balas & Daniel Zawack, 1988. "The Shifting Bottleneck Procedure for Job Shop Scheduling," Management Science, INFORMS, vol. 34(3), pages 391-401, March.
    18. Dominik Kress & David Müller & Jenny Nossack, 2019. "A worker constrained flexible job shop scheduling problem with sequence-dependent setup times," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 179-217, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Da Col, Giacomo & Teppan, Erich C., 2022. "Industrial-size job shop scheduling with constraint programming," Operations Research Perspectives, Elsevier, vol. 9(C).
    2. Eduardo Guzman & Beatriz Andres & Raul Poler, 2022. "A Decision-Making Tool for Algorithm Selection Based on a Fuzzy TOPSIS Approach to Solve Replenishment, Production and Distribution Planning Problems," Mathematics, MDPI, vol. 10(9), pages 1-28, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. F. Guerriero, 2008. "Hybrid Rollout Approaches for the Job Shop Scheduling Problem," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 419-438, November.
    2. Francis Sourd & Wim Nuijten, 2000. "Multiple-Machine Lower Bounds for Shop-Scheduling Problems," INFORMS Journal on Computing, INFORMS, vol. 12(4), pages 341-352, November.
    3. Carlos Mencía & María Sierra & Ramiro Varela, 2013. "Depth-first heuristic search for the job shop scheduling problem," Annals of Operations Research, Springer, vol. 206(1), pages 265-296, July.
    4. Sels, Veronique & Craeymeersch, Kjeld & Vanhoucke, Mario, 2011. "A hybrid single and dual population search procedure for the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 215(3), pages 512-523, December.
    5. Pisut Pongchairerks, 2019. "A Two-Level Metaheuristic Algorithm for the Job-Shop Scheduling Problem," Complexity, Hindawi, vol. 2019, pages 1-11, March.
    6. Hosseini, Amir & Otto, Alena & Pesch, Erwin, 2024. "Scheduling in manufacturing with transportation: Classification and solution techniques," European Journal of Operational Research, Elsevier, vol. 315(3), pages 821-843.
    7. Dauzère-Pérès, Stéphane & Ding, Junwen & Shen, Liji & Tamssaouet, Karim, 2024. "The flexible job shop scheduling problem: A review," European Journal of Operational Research, Elsevier, vol. 314(2), pages 409-432.
    8. Diarmuid Grimes & Emmanuel Hebrard, 2015. "Solving Variants of the Job Shop Scheduling Problem Through Conflict-Directed Search," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 268-284, May.
    9. Da Col, Giacomo & Teppan, Erich C., 2022. "Industrial-size job shop scheduling with constraint programming," Operations Research Perspectives, Elsevier, vol. 9(C).
    10. Raja Awais Liaqait & Shermeen Hamid & Salman Sagheer Warsi & Azfar Khalid, 2021. "A Critical Analysis of Job Shop Scheduling in Context of Industry 4.0," Sustainability, MDPI, vol. 13(14), pages 1-19, July.
    11. Vipul Jain & Ignacio E. Grossmann, 2001. "Algorithms for Hybrid MILP/CP Models for a Class of Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 13(4), pages 258-276, November.
    12. Rego, César & Duarte, Renato, 2009. "A filter-and-fan approach to the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 194(3), pages 650-662, May.
    13. Jain, A. S. & Meeran, S., 1999. "Deterministic job-shop scheduling: Past, present and future," European Journal of Operational Research, Elsevier, vol. 113(2), pages 390-434, March.
    14. Michael Pinedo & Marcos Singer, 1999. "A shifting bottleneck heuristic for minimizing the total weighted tardiness in a job shop," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(1), pages 1-17, February.
    15. El-Bouri, A. & Azizi, N. & Zolfaghari, S., 2007. "A comparative study of a new heuristic based on adaptive memory programming and simulated annealing: The case of job shop scheduling," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1894-1910, March.
    16. Bahman Naderi & Rubén Ruiz & Vahid Roshanaei, 2023. "Mixed-Integer Programming vs. Constraint Programming for Shop Scheduling Problems: New Results and Outlook," INFORMS Journal on Computing, INFORMS, vol. 35(4), pages 817-843, July.
    17. Zapfel, G. & Wasner, M., 2000. "A heuristic solution concept for a generalized machine sequencing problem with an application to radiator manufacturing," International Journal of Production Economics, Elsevier, vol. 68(2), pages 199-213, November.
    18. Yabo Luo, 2017. "Nested optimization method combining complex method and ant colony optimization to solve JSSP with complex associated processes," Journal of Intelligent Manufacturing, Springer, vol. 28(8), pages 1801-1815, December.
    19. Blazewicz, Jacek & Domschke, Wolfgang & Pesch, Erwin, 1996. "The job shop scheduling problem: Conventional and new solution techniques," European Journal of Operational Research, Elsevier, vol. 93(1), pages 1-33, August.
    20. Demirkol, Ebru & Mehta, Sanjay & Uzsoy, Reha, 1998. "Benchmarks for shop scheduling problems," European Journal of Operational Research, Elsevier, vol. 109(1), pages 137-141, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:302:y:2022:i:3:p:874-891. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.