IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v215y2011i3p616-628.html
   My bibliography  Save this article

R&D pipeline management: Task interdependencies and risk management

Author

Listed:
  • Colvin, Matthew
  • Maravelias, Christos T.

Abstract

Maintaining a rich research and development (R&D) pipeline is the key to remaining competitive in many industrial sectors. Due to its nature, R&D activities are subject to multiple sources of uncertainty, the modeling of which is compounded by the ability of the decision maker to alter the underlying process. In this paper, we present a multi-stage stochastic programming framework for R&D pipeline management, which demonstrates how essential considerations can be modeled in an efficient manner including: (i) the selection and scheduling of R&D tasks with general precedence constraints under pass/fail uncertainty, and (ii) resource planning decisions (expansion/contraction and outsourcing) for multiple resource types. Furthermore, we study interdependencies between tasks in terms of probability of success, resource usage and market impact. Finally, we explore risk management approaches, including novel formulations for value at risk and conditional value at risk.

Suggested Citation

  • Colvin, Matthew & Maravelias, Christos T., 2011. "R&D pipeline management: Task interdependencies and risk management," European Journal of Operational Research, Elsevier, vol. 215(3), pages 616-628, December.
  • Handle: RePEc:eee:ejores:v:215:y:2011:i:3:p:616-628
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221711005522
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    2. Valls, Vicente & Ballestin, Francisco & Quintanilla, Sacramento, 2005. "Justification and RCPSP: A technique that pays," European Journal of Operational Research, Elsevier, vol. 165(2), pages 375-386, September.
    3. Bouleimen, K. & Lecocq, H., 2003. "A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version," European Journal of Operational Research, Elsevier, vol. 149(2), pages 268-281, September.
    4. Mika, Marek & Waligora, Grzegorz & Weglarz, Jan, 2005. "Simulated annealing and tabu search for multi-mode resource-constrained project scheduling with positive discounted cash flows and different payment models," European Journal of Operational Research, Elsevier, vol. 164(3), pages 639-668, August.
    5. Jeffrey S. Stonebraker, 2002. "How Bayer Makes Decisions to Develop New Drugs," Interfaces, INFORMS, vol. 32(6), pages 77-90, December.
    6. Colvin, Matthew & Maravelias, Christos T., 2010. "Modeling methods and a branch and cut algorithm for pharmaceutical clinical trial planning using stochastic programming," European Journal of Operational Research, Elsevier, vol. 203(1), pages 205-215, May.
    7. Ming Ding & Jehoshua Eliashberg, 2002. "Structuring the New Product Development Pipeline," Management Science, INFORMS, vol. 48(3), pages 343-363, March.
    8. Neumann, K. & Zimmermann, J., 2000. "Procedures for resource leveling and net present value problems in project scheduling with general temporal and resource constraints," European Journal of Operational Research, Elsevier, vol. 127(2), pages 425-443, December.
    9. Herroelen, Willy & Leus, Roel, 2005. "Project scheduling under uncertainty: Survey and research potentials," European Journal of Operational Research, Elsevier, vol. 165(2), pages 289-306, September.
    10. Böttcher, Jan & Drexl, A. & Kolisch, R. & Salewski, F., 1999. "Project scheduling under partially renewable resource constraints," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 345, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    11. Benati, Stefano & Rizzi, Romeo, 2007. "A mixed integer linear programming formulation of the optimal mean/Value-at-Risk portfolio problem," European Journal of Operational Research, Elsevier, vol. 176(1), pages 423-434, January.
    12. Brucker, Peter & Drexl, Andreas & Mohring, Rolf & Neumann, Klaus & Pesch, Erwin, 1999. "Resource-constrained project scheduling: Notation, classification, models, and methods," European Journal of Operational Research, Elsevier, vol. 112(1), pages 3-41, January.
    13. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    14. Jan Böttcher & Andreas Drexl & Rainer Kolisch & Frank Salewski, 1999. "Project Scheduling Under Partially Renewable Resource Constraints," Management Science, INFORMS, vol. 45(4), pages 543-559, April.
    15. Joseph A. DiMasi & Henry G. Grabowski, 2007. "The cost of biopharmaceutical R&D: is biotech different?," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 28(4-5), pages 469-479.
    16. Pilar Tormos & Antonio Lova, 2001. "A Competitive Heuristic Solution Technique for Resource-Constrained Project Scheduling," Annals of Operations Research, Springer, vol. 102(1), pages 65-81, February.
    17. Solak, Senay & Clarke, John-Paul B. & Johnson, Ellis L. & Barnes, Earl R., 2010. "Optimization of R&D project portfolios under endogenous uncertainty," European Journal of Operational Research, Elsevier, vol. 207(1), pages 420-433, November.
    18. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    19. Kolisch, Rainer & Hartmann, Sonke, 2006. "Experimental investigation of heuristics for resource-constrained project scheduling: An update," European Journal of Operational Research, Elsevier, vol. 174(1), pages 23-37, October.
    20. DiMasi, Joseph A. & Hansen, Ronald W. & Grabowski, Henry G., 2003. "The price of innovation: new estimates of drug development costs," Journal of Health Economics, Elsevier, vol. 22(2), pages 151-185, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kosztyán, Zsolt T. & Katona, Attila I. & Kuppens, Kurt & Kisgyörgy-Pál, Mária & Nachbagauer, Andreas & Csizmadia, Tibor, 2022. "Exploring the structures and design effects of EU-funded R&D&I project portfolios," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    2. Li, Zhengbing & Feng, Huixia & Liang, Yongtu & Xu, Ning & Nie, Siming & Zhang, Haoran, 2019. "A leakage risk assessment method for hazardous liquid pipeline based on Markov chain Monte Carlo," International Journal of Critical Infrastructure Protection, Elsevier, vol. 27(C).
    3. Maier, Sebastian & Pflug, Georg C. & Polak, John W., 2020. "Valuing portfolios of interdependent real options under exogenous and endogenous uncertainties," European Journal of Operational Research, Elsevier, vol. 285(1), pages 133-147.
    4. Aizemberg, Luiz & Kramer, Hugo Harry & Pessoa, Artur Alves & Uchoa, Eduardo, 2014. "Formulations for a problem of petroleum transportation," European Journal of Operational Research, Elsevier, vol. 237(1), pages 82-90.
    5. Alonso-Ayuso, Antonio & Carvallo, Felipe & Escudero, Laureano F. & Guignard, Monique & Pi, Jiaxing & Puranmalka, Raghav & Weintraub, Andrés, 2014. "Medium range optimization of copper extraction planning under uncertainty in future copper prices," European Journal of Operational Research, Elsevier, vol. 233(3), pages 711-726.
    6. Badri, Hossein & Fatemi Ghomi, S.M.T. & Hejazi, Taha-Hossein, 2017. "A two-stage stochastic programming approach for value-based closed-loop supply chain network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 1-17.
    7. Kavitha G. Menon & Ricardo Fukasawa & Luis A. Ricardez-Sandoval, 2021. "A novel stochastic programming approach for scheduling of batch processes with decision dependent time of uncertainty realization," Annals of Operations Research, Springer, vol. 305(1), pages 163-190, October.
    8. Helal Zaabi & Hamdi Bashir, 2020. "Modeling and analyzing project interdependencies in project portfolios using an integrated social network analysis-fuzzy TOPSIS MICMAC approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(6), pages 1083-1106, December.
    9. Martzoukos, Spiros H. & Zacharias, Eleftherios, 2013. "Real option games with R&D and learning spillovers," Omega, Elsevier, vol. 41(2), pages 236-249.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weglarz, Jan & Józefowska, Joanna & Mika, Marek & Waligóra, Grzegorz, 2011. "Project scheduling with finite or infinite number of activity processing modes - A survey," European Journal of Operational Research, Elsevier, vol. 208(3), pages 177-205, February.
    2. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
    3. Hartmann, Sönke & Briskorn, Dirk, 2008. "A survey of variants and extensions of the resource-constrained project scheduling problem," Working Paper Series 02/2008, Hamburg School of Business Administration (HSBA).
    4. Chen, Jiaqiong & Askin, Ronald G., 2009. "Project selection, scheduling and resource allocation with time dependent returns," European Journal of Operational Research, Elsevier, vol. 193(1), pages 23-34, February.
    5. Lova, Antonio & Tormos, Pilar & Cervantes, Mariamar & Barber, Federico, 2009. "An efficient hybrid genetic algorithm for scheduling projects with resource constraints and multiple execution modes," International Journal of Production Economics, Elsevier, vol. 117(2), pages 302-316, February.
    6. Buddhakulsomsiri, Jirachai & Kim, David S., 2007. "Priority rule-based heuristic for multi-mode resource-constrained project scheduling problems with resource vacations and activity splitting," European Journal of Operational Research, Elsevier, vol. 178(2), pages 374-390, April.
    7. Peteghem, Vincent Van & Vanhoucke, Mario, 2010. "A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 201(2), pages 409-418, March.
    8. Van Peteghem, Vincent & Vanhoucke, Mario, 2014. "An experimental investigation of metaheuristics for the multi-mode resource-constrained project scheduling problem on new dataset instances," European Journal of Operational Research, Elsevier, vol. 235(1), pages 62-72.
    9. Valls, Vicente & Ballestin, Francisco & Quintanilla, Sacramento, 2008. "A hybrid genetic algorithm for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 185(2), pages 495-508, March.
    10. Moumene, Khaled & Ferland, Jacques A., 2009. "Activity list representation for a generalization of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 199(1), pages 46-54, November.
    11. Abdollah Arasteh, 2020. "Considering Project Management Activities for Engineering Design Groups," SN Operations Research Forum, Springer, vol. 1(4), pages 1-29, December.
    12. Kemmoé Tchomté, Sylverin & Gourgand, Michel, 2009. "Particle swarm optimization: A study of particle displacement for solving continuous and combinatorial optimization problems," International Journal of Production Economics, Elsevier, vol. 121(1), pages 57-67, September.
    13. Xabier A. Martin & Rosa Herrero & Angel A. Juan & Javier Panadero, 2024. "An Agile Adaptive Biased-Randomized Discrete-Event Heuristic for the Resource-Constrained Project Scheduling Problem," Mathematics, MDPI, vol. 12(12), pages 1-21, June.
    14. André Schnabel & Carolin Kellenbrink & Stefan Helber, 2018. "Profit-oriented scheduling of resource-constrained projects with flexible capacity constraints," Business Research, Springer;German Academic Association for Business Research, vol. 11(2), pages 329-356, September.
    15. Sepehr Proon & Mingzhou Jin, 2011. "A genetic algorithm with neighborhood search for the resource‐constrained project scheduling problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(2), pages 73-82, March.
    16. Coelho, José & Vanhoucke, Mario, 2011. "Multi-mode resource-constrained project scheduling using RCPSP and SAT solvers," European Journal of Operational Research, Elsevier, vol. 213(1), pages 73-82, August.
    17. Dieter Debels & Mario Vanhoucke, 2007. "A Decomposition-Based Genetic Algorithm for the Resource-Constrained Project-Scheduling Problem," Operations Research, INFORMS, vol. 55(3), pages 457-469, June.
    18. Etgar, Ran & Gelbard, Roy & Cohen, Yuval, 2017. "Optimizing version release dates of research and development long-term processes," European Journal of Operational Research, Elsevier, vol. 259(2), pages 642-653.
    19. Salo, Ahti & Andelmin, Juho & Oliveira, Fabricio, 2022. "Decision programming for mixed-integer multi-stage optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 299(2), pages 550-565.
    20. Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:215:y:2011:i:3:p:616-628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.