IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v46y1998i3p406-422.html
   My bibliography  Save this article

The Air Traffic Flow Management Problem with Enroute Capacities

Author

Listed:
  • Dimitris Bertsimas

    (Massachusetts Institute of Technology, Cambridge, Massachusetts)

  • Sarah Stock Patterson

    (Massachusetts Institute of Technology, Cambridge, Massachusetts)

Abstract

Throughout the United States and Europe, demand for airport use has been increasing rapidly, while airport capacity has been stagnating. Over the last ten years the number of passengers has increased by more than 50 percent and is expected to continue increasing at this rate. Acute congestion in many major airports has been the unfortunate result. For U.S. airlines, the expected yearly cost of the resulting delays is currently estimated at $3 billion. In order to put this number in perspective, the total reported losses of all U.S. airlines amounted to approximately $2 billion in 1991 and $2.5 billion in 1990. Furthermore, every day 700 to 1100 flights are delayed by 15 minutes or more. European airlines are in a similar plight. Optimally controlling the flow of aircraft either by adjusting their release times into the network (ground-holding) or their speed once they are airborne is a cost effective method to reduce the impact of congestion on the air traffic system. This paper makes the following contributions: (a) we build a model that takes into account the capacities of the National Airspace System (NAS) as well as the capacities at the airports, and we show that the resulting formulation is rather strong as some of the proposed inequalities are facet defining for the convex hull of solutions; (b) we address the complexity of the problem; (c) we extend that model to account for several variations of the basic problem, most notably, how to reroute flights and how to handle banks in the hub and spoke system; (d) we show that by relaxing some of our constraints we obtain a previously addressed problem and that the LP relaxation bound of our formulation is at least as strong when compared to all others proposed in the literature for this problem; and (e) we solve large scale, realistic size problems with several thousand flights.

Suggested Citation

  • Dimitris Bertsimas & Sarah Stock Patterson, 1998. "The Air Traffic Flow Management Problem with Enroute Capacities," Operations Research, INFORMS, vol. 46(3), pages 406-422, June.
  • Handle: RePEc:inm:oropre:v:46:y:1998:i:3:p:406-422
    DOI: 10.1287/opre.46.3.406
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.46.3.406
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.46.3.406?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter B. M. Vranas & Dimitris Bertsimas & Amedeo R. Odoni, 1994. "Dynamic Ground-Holding Policies for a Network of Airports," Transportation Science, INFORMS, vol. 28(4), pages 275-291, November.
    2. Octavio Richetta & Amedeo R. Odoni, 1993. "Solving Optimally the Static Ground-Holding Policy Problem in Air Traffic Control," Transportation Science, INFORMS, vol. 27(3), pages 228-238, August.
    3. Peter B. Vranas & Dimitris J. Bertsimas & Amedeo R. Odoni, 1994. "The Multi-Airport Ground-Holding Problem in Air Traffic Control," Operations Research, INFORMS, vol. 42(2), pages 249-261, April.
    4. Richetta, Octavio & Odoni, Amedeo R., 1994. "Dynamic solution to the ground-holding problem in air traffic control," Transportation Research Part A: Policy and Practice, Elsevier, vol. 28(3), pages 167-185, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bard, Jonathan F. & Mohan, Dinesh Natarajan, 2008. "Reallocating arrival slots during a ground delay program," Transportation Research Part B: Methodological, Elsevier, vol. 42(2), pages 113-134, February.
    2. Dimitris Bertsimas & Sarah Stock Patterson, 2000. "The Traffic Flow Management Rerouting Problem in Air Traffic Control: A Dynamic Network Flow Approach," Transportation Science, INFORMS, vol. 34(3), pages 239-255, August.
    3. Kammoun, Mohamed Ali & Rezg, Nidhal, 2018. "An efficient hybrid approach for resolving the aircraft routing and rescheduling problem," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 73-87.
    4. Mohamed Ali Kammoun & Sadok Turki & Nidhal Rezg, 2020. "Optimization of Flight Rescheduling Problem under Carbon Tax," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    5. Chen, Yunxiang & Zhao, Yifei & Wu, Yexin, 2024. "Recent progress in air traffic flow management: A review," Journal of Air Transport Management, Elsevier, vol. 116(C).
    6. Brunner, Jens O., 2014. "Rescheduling of flights during ground delay programs with consideration of passenger and crew connections," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 236-252.
    7. Guo, Yechenfeng & Hu, Minghua & Zou, Bo & Hansen, Mark & Zhang, Ying & Xie, Hua, 2022. "Air Traffic Flow Management Integrating Separation Management and Ground Holding: An Efficiency-Equity Bi-objective Perspective," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 394-423.
    8. Thomas W. M. Vossen & Michael O. Ball, 2006. "Slot Trading Opportunities in Collaborative Ground Delay Programs," Transportation Science, INFORMS, vol. 40(1), pages 29-43, February.
    9. Ghoneim, Ayman & Abbass, Hussein A., 2016. "A multiobjective distance separation methodology to determine sector-level minimum separation for safe air traffic scenarios," European Journal of Operational Research, Elsevier, vol. 253(1), pages 226-240.
    10. Dimitris Bertsimas & Shubham Gupta, 2016. "Fairness and Collaboration in Network Air Traffic Flow Management: An Optimization Approach," Transportation Science, INFORMS, vol. 50(1), pages 57-76, February.
    11. Churchill, Andrew M. & Lovell, David J., 2012. "Coordinated aviation network resource allocation under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 19-33.
    12. Cynthia Barnhart & Dimitris Bertsimas & Constantine Caramanis & Douglas Fearing, 2012. "Equitable and Efficient Coordination in Traffic Flow Management," Transportation Science, INFORMS, vol. 46(2), pages 262-280, May.
    13. Woo, Young-Bin & Moon, Ilkyeong, 2021. "Scenario-based stochastic programming for an airline-driven flight rescheduling problem under ground delay programs," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    14. Alexander S. Estes & Michael O. Ball, 2020. "Equity and Strength in Stochastic Integer Programming Models for the Dynamic Single Airport Ground-Holding Problem," Transportation Science, INFORMS, vol. 54(4), pages 944-955, July.
    15. Murça, Mayara Condé Rocha, 2018. "Collaborative air traffic flow management: Incorporating airline preferences in rerouting decisions," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 97-107.
    16. Diao, Xudong & Chen, Chun-Hsien, 2018. "A sequence model for air traffic flow management rerouting problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 15-30.
    17. Gregory D. Glockner & George L. Nemhauser, 2000. "A Dynamic Network Flow Problem with Uncertain arc Capacities: Formulation and Problem Structure," Operations Research, INFORMS, vol. 48(2), pages 233-242, April.
    18. Leal de Matos, Paula & Ormerod, Richard, 2000. "The application of operational research to European air traffic flow management - understanding the context," European Journal of Operational Research, Elsevier, vol. 123(1), pages 125-144, May.
    19. Avijit Mukherjee & Mark Hansen, 2007. "A Dynamic Stochastic Model for the Single Airport Ground Holding Problem," Transportation Science, INFORMS, vol. 41(4), pages 444-456, November.
    20. Robert Hoffman & Michael O. Ball, 2000. "A Comparison of Formulations for the Single-Airport Ground-Holding Problem with Banking Constraints," Operations Research, INFORMS, vol. 48(4), pages 578-590, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:46:y:1998:i:3:p:406-422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.