IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v273y2019i2p650-661.html
   My bibliography  Save this article

Modeling time-dependent randomness in stochastic dual dynamic programming

Author

Listed:
  • Löhndorf, Nils
  • Shapiro, Alexander

Abstract

We consider the multistage stochastic programming problem where uncertainty enters the right-hand sides of the problem. Stochastic Dual Dynamic Programming (SDDP) is a popular method to solve such problems under the assumption that the random data process is stagewise independent. There exist two approaches to incorporate dependence into SDDP. One approach is to model the data process as an autoregressive time series and to reformulate the problem in stagewise independent terms by adding state variables to the model (TS-SDDP). The other approach is to use Markov Chain discretization of the random data process (MC-SDDP). While MC-SDDP can handle any Markovian data process, some advantages of statistical analysis of the policy under the true process are lost. In this work, we compare both approaches based on a computational study using the long-term operational planning problem of the Brazilian interconnected power systems. We found that for the considered problem the optimality bounds computed by the MC-SDDP method close faster than its TS-SDDP counterpart, and the MC-SDDP policy dominates the TS-SDDP policy. When implementing the optimized policies on real data, we observe that not only the method but also the quality of the stochastic model has an impact on policy performance and that using an AV@R formulation is effective in making the policy robust against a misspecified stochastic model.

Suggested Citation

  • Löhndorf, Nils & Shapiro, Alexander, 2019. "Modeling time-dependent randomness in stochastic dual dynamic programming," European Journal of Operational Research, Elsevier, vol. 273(2), pages 650-661.
  • Handle: RePEc:eee:ejores:v:273:y:2019:i:2:p:650-661
    DOI: 10.1016/j.ejor.2018.08.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718306787
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.08.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shapiro, Alexander & Tekaya, Wajdi & da Costa, Joari Paulo & Soares, Murilo Pereira, 2013. "Risk neutral and risk averse Stochastic Dual Dynamic Programming method," European Journal of Operational Research, Elsevier, vol. 224(2), pages 375-391.
    2. Andrzej Ruszczyński & Alexander Shapiro, 2006. "Optimization of Convex Risk Functions," Mathematics of Operations Research, INFORMS, vol. 31(3), pages 433-452, August.
    3. Shapiro, Alexander, 2011. "Analysis of stochastic dual dynamic programming method," European Journal of Operational Research, Elsevier, vol. 209(1), pages 63-72, February.
    4. Richard Bellman, 1957. "On a Dynamic Programming Approach to the Caterer Problem--I," Management Science, INFORMS, vol. 3(3), pages 270-278, April.
    5. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    6. J. Bonnans & Zhihao Cen & Thibault Christel, 2012. "Energy contracts management by stochastic programming techniques," Annals of Operations Research, Springer, vol. 200(1), pages 199-222, November.
    7. Philpott, A.B. & de Matos, V.L., 2012. "Dynamic sampling algorithms for multi-stage stochastic programs with risk aversion," European Journal of Operational Research, Elsevier, vol. 218(2), pages 470-483.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Finnah, Benedikt & Gönsch, Jochen & Ziel, Florian, 2022. "Integrated day-ahead and intraday self-schedule bidding for energy storage systems using approximate dynamic programming," European Journal of Operational Research, Elsevier, vol. 301(2), pages 726-746.
    2. Guigues, Vincent & Shapiro, Alexander & Cheng, Yi, 2023. "Duality and sensitivity analysis of multistage linear stochastic programs," European Journal of Operational Research, Elsevier, vol. 308(2), pages 752-767.
    3. Yıldıran, Uğur, 2023. "Robust multi-stage economic dispatch with renewable generation and storage," European Journal of Operational Research, Elsevier, vol. 309(2), pages 890-909.
    4. Joakim Dimoski & Stein-Erik Fleten & Nils Löhndorf & Sveinung Nersten, 2023. "Dynamic hedging for the real option management of hydropower production with exchange rate risks," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(2), pages 525-554, June.
    5. Street, Alexandre & Valladão, Davi & Lawson, André & Velloso, Alexandre, 2020. "Assessing the cost of the Hazard-Decision simplification in multistage stochastic hydrothermal scheduling," Applied Energy, Elsevier, vol. 280(C).
    6. Thuener Silva & Davi Valladão & Tito Homem-de-Mello, 2021. "A data-driven approach for a class of stochastic dynamic optimization problems," Computational Optimization and Applications, Springer, vol. 80(3), pages 687-729, December.
    7. Löhndorf, Nils & Wozabal, David, 2021. "Gas storage valuation in incomplete markets," European Journal of Operational Research, Elsevier, vol. 288(1), pages 318-330.
    8. Pierre Carpentier & Jean-Philippe Chancelier & Michel Lara & François Pacaud, 2020. "Mixed Spatial and Temporal Decompositions for Large-Scale Multistage Stochastic Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 985-1005, September.
    9. Lorenzo Reus & Rodolfo Prado, 2022. "Need to Meet Investment Goals? Track Synthetic Indexes with the SDDP Method," Computational Economics, Springer;Society for Computational Economics, vol. 60(1), pages 47-69, June.
    10. D. Ávila & A. Papavasiliou & N. Löhndorf, 2022. "Parallel and distributed computing for stochastic dual dynamic programming," Computational Management Science, Springer, vol. 19(2), pages 199-226, June.
    11. Park, Jangho & Bayraksan, Güzin, 2023. "A multistage distributionally robust optimization approach to water allocation under climate uncertainty," European Journal of Operational Research, Elsevier, vol. 306(2), pages 849-871.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmutoğulları, Ali İrfan & Çavuş, Özlem & Aktürk, M. Selim, 2018. "Bounds on risk-averse mixed-integer multi-stage stochastic programming problems with mean-CVaR," European Journal of Operational Research, Elsevier, vol. 266(2), pages 595-608.
    2. Powell, Warren B., 2019. "A unified framework for stochastic optimization," European Journal of Operational Research, Elsevier, vol. 275(3), pages 795-821.
    3. Schur, Rouven & Gönsch, Jochen & Hassler, Michael, 2019. "Time-consistent, risk-averse dynamic pricing," European Journal of Operational Research, Elsevier, vol. 277(2), pages 587-603.
    4. Liu, Rui Peng & Shapiro, Alexander, 2020. "Risk neutral reformulation approach to risk averse stochastic programming," European Journal of Operational Research, Elsevier, vol. 286(1), pages 21-31.
    5. Davi Valladão & Thuener Silva & Marcus Poggi, 2019. "Time-consistent risk-constrained dynamic portfolio optimization with transactional costs and time-dependent returns," Annals of Operations Research, Springer, vol. 282(1), pages 379-405, November.
    6. Andy Philpott & Vitor de Matos & Erlon Finardi, 2013. "On Solving Multistage Stochastic Programs with Coherent Risk Measures," Operations Research, INFORMS, vol. 61(4), pages 957-970, August.
    7. Vincent Guigues, 2014. "SDDP for some interstage dependent risk-averse problems and application to hydro-thermal planning," Computational Optimization and Applications, Springer, vol. 57(1), pages 167-203, January.
    8. Weini Zhang & Hamed Rahimian & Güzin Bayraksan, 2016. "Decomposition Algorithms for Risk-Averse Multistage Stochastic Programs with Application to Water Allocation under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 385-404, August.
    9. Rudloff, Birgit & Street, Alexandre & Valladão, Davi M., 2014. "Time consistency and risk averse dynamic decision models: Definition, interpretation and practical consequences," European Journal of Operational Research, Elsevier, vol. 234(3), pages 743-750.
    10. Shapiro, Alexander, 2021. "Tutorial on risk neutral, distributionally robust and risk averse multistage stochastic programming," European Journal of Operational Research, Elsevier, vol. 288(1), pages 1-13.
    11. Daniel R. Jiang & Warren B. Powell, 2018. "Risk-Averse Approximate Dynamic Programming with Quantile-Based Risk Measures," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 554-579, May.
    12. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
    13. Lucas Merabet & Bernardo Freitas Paulo Costa & Vincent Leclere, 2024. "Policy with guaranteed risk-adjusted performance for multistage stochastic linear problems," Computational Management Science, Springer, vol. 21(2), pages 1-25, December.
    14. A. B. Philpott & V. L. Matos & L. Kapelevich, 2018. "Distributionally robust SDDP," Computational Management Science, Springer, vol. 15(3), pages 431-454, October.
    15. Dowson, Oscar & Philpott, Andy & Mason, Andrew & Downward, Anthony, 2019. "A multi-stage stochastic optimization model of a pastoral dairy farm," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1077-1089.
    16. Pan, Zhenning & Yu, Tao & Li, Jie & Qu, Kaiping & Yang, Bo, 2020. "Risk-averse real-time dispatch of integrated electricity and heat system using a modified approximate dynamic programming approach," Energy, Elsevier, vol. 198(C).
    17. Löhndorf, Nils & Wozabal, David, 2021. "Gas storage valuation in incomplete markets," European Journal of Operational Research, Elsevier, vol. 288(1), pages 318-330.
    18. W. Ackooij & X. Warin, 2020. "On conditional cuts for stochastic dual dynamic programming," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 173-199, June.
    19. Soares, Murilo Pereira & Street, Alexandre & Valladão, Davi Michel, 2017. "On the solution variability reduction of Stochastic Dual Dynamic Programming applied to energy planning," European Journal of Operational Research, Elsevier, vol. 258(2), pages 743-760.
    20. D. Ávila & A. Papavasiliou & N. Löhndorf, 2022. "Parallel and distributed computing for stochastic dual dynamic programming," Computational Management Science, Springer, vol. 19(2), pages 199-226, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:273:y:2019:i:2:p:650-661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.