IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v81y2021i2d10.1007_s10898-021-01048-5.html
   My bibliography  Save this article

Bilevel cutting-plane algorithm for cardinality-constrained mean-CVaR portfolio optimization

Author

Listed:
  • Ken Kobayashi

    (Fujitsu Limited)

  • Yuichi Takano

    (University of Tsukuba)

  • Kazuhide Nakata

    (Tokyo Institute of Technology)

Abstract

This paper studies mean-risk portfolio optimization models using the conditional value-at-risk (CVaR) as a risk measure. We also employ a cardinality constraint for limiting the number of invested assets. Solving such a cardinality-constrained mean-CVaR model is computationally challenging for two main reasons. First, this model is formulated as a mixed-integer optimization (MIO) problem because of the cardinality constraint, so solving it exactly is very hard when the number of investable assets is large. Second, the problem size depends on the number of asset return scenarios, and the computational efficiency decreases when the number of scenarios is large. To overcome these challenges, we propose a high-performance algorithm named the bilevel cutting-plane algorithm for exactly solving the cardinality-constrained mean-CVaR portfolio optimization problem. We begin by reformulating the problem as a bilevel optimization problem and then develop a cutting-plane algorithm for solving the upper-level problem. To speed up computations for cut generation, we apply to the lower-level problem another cutting-plane algorithm for efficiently minimizing CVaR with a large number of scenarios. Moreover, we prove the convergence properties of our bilevel cutting-plane algorithm. Numerical experiments demonstrate that, compared with other MIO approaches, our algorithm can provide optimal solutions to large problem instances faster.

Suggested Citation

  • Ken Kobayashi & Yuichi Takano & Kazuhide Nakata, 2021. "Bilevel cutting-plane algorithm for cardinality-constrained mean-CVaR portfolio optimization," Journal of Global Optimization, Springer, vol. 81(2), pages 493-528, October.
  • Handle: RePEc:spr:jglopt:v:81:y:2021:i:2:d:10.1007_s10898-021-01048-5
    DOI: 10.1007/s10898-021-01048-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-021-01048-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-021-01048-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michal Kaut & Hercules Vladimirou & Stein W. Wallace & Stavros A. Zenios, 2007. "Stability analysis of portfolio management with conditional value-at-risk," Quantitative Finance, Taylor & Francis Journals, vol. 7(4), pages 397-409.
    2. Takeda, Akiko & Kanamori, Takafumi, 2009. "A robust approach based on conditional value-at-risk measure to statistical learning problems," European Journal of Operational Research, Elsevier, vol. 198(1), pages 287-296, October.
    3. Ken Kobayashi & Yuich Takano, 2020. "A branch-and-cut algorithm for solving mixed-integer semidefinite optimization problems," Computational Optimization and Applications, Springer, vol. 75(2), pages 493-513, March.
    4. Ryuta Tamura & Ken Kobayashi & Yuichi Takano & Ryuhei Miyashiro & Kazuhide Nakata & Tomomi Matsui, 2019. "Mixed integer quadratic optimization formulations for eliminating multicollinearity based on variance inflation factor," Journal of Global Optimization, Springer, vol. 73(2), pages 431-446, February.
    5. Dimitris Bertsimas & Christopher Darnell & Robert Soucy, 1999. "Portfolio Construction Through Mixed-Integer Programming at Grantham, Mayo, Van Otterloo and Company," Interfaces, INFORMS, vol. 29(1), pages 49-66, February.
    6. Frank Fabozzi & Dashan Huang & Guofu Zhou, 2010. "Robust portfolios: contributions from operations research and finance," Annals of Operations Research, Springer, vol. 176(1), pages 191-220, April.
    7. Alexander Shapiro, 2013. "On Kusuoka Representation of Law Invariant Risk Measures," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 142-152, February.
    8. Andre F. Perold, 1984. "Large-Scale Portfolio Optimization," Management Science, INFORMS, vol. 30(10), pages 1143-1160, October.
    9. Xiaojin Zheng & Xiaoling Sun & Duan Li, 2014. "Improving the Performance of MIQP Solvers for Quadratic Programs with Cardinality and Minimum Threshold Constraints: A Semidefinite Program Approach," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 690-703, November.
    10. Churlzu Lim & Hanif Sherali & Stan Uryasev, 2010. "Portfolio optimization by minimizing conditional value-at-risk via nondifferentiable optimization," Computational Optimization and Applications, Springer, vol. 46(3), pages 391-415, July.
    11. Jun-ya Gotoh & Akiko Takeda, 2011. "On the role of norm constraints in portfolio selection," Computational Management Science, Springer, vol. 8(4), pages 323-353, November.
    12. Alexander, S. & Coleman, T.F. & Li, Y., 2006. "Minimizing CVaR and VaR for a portfolio of derivatives," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 583-605, February.
    13. Alexandra Künzi-Bay & János Mayer, 2006. "Computational aspects of minimizing conditional value-at-risk," Computational Management Science, Springer, vol. 3(1), pages 3-27, January.
    14. Zhiping Chen & Shen Peng & Abdel Lisser, 2020. "A sparse chance constrained portfolio selection model with multiple constraints," Journal of Global Optimization, Springer, vol. 77(4), pages 825-852, August.
    15. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    16. Antonio Frangioni & Fabio Furini & Claudio Gentile, 2016. "Approximated perspective relaxations: a project and lift approach," Computational Optimization and Applications, Springer, vol. 63(3), pages 705-735, April.
    17. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    18. Willem Haneveld & Maarten Vlerk, 2006. "Integrated Chance Constraints: Reduced Forms and an Algorithm," Computational Management Science, Springer, vol. 3(4), pages 245-269, September.
    19. Victor DeMiguel & Lorenzo Garlappi & Francisco J. Nogales & Raman Uppal, 2009. "A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms," Management Science, INFORMS, vol. 55(5), pages 798-812, May.
    20. Angelelli, Enrico & Mansini, Renata & Speranza, M. Grazia, 2008. "A comparison of MAD and CVaR models with real features," Journal of Banking & Finance, Elsevier, vol. 32(7), pages 1188-1197, July.
    21. Włodzimierz Ogryczak & Tomasz Śliwiński, 2011. "On solving the dual for portfolio selection by optimizing Conditional Value at Risk," Computational Optimization and Applications, Springer, vol. 50(3), pages 591-595, December.
    22. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    23. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    24. Jun-Ya Gotoh & Keita Shinozaki & Akiko Takeda, 2013. "Robust portfolio techniques for mitigating the fragility of CVaR minimization and generalization to coherent risk measures," Quantitative Finance, Taylor & Francis Journals, vol. 13(10), pages 1621-1635, October.
    25. Garud Iyengar & Alfred Ma, 2013. "Fast gradient descent method for Mean-CVaR optimization," Annals of Operations Research, Springer, vol. 205(1), pages 203-212, May.
    26. Martin Branda & Max Bucher & Michal Červinka & Alexandra Schwartz, 2018. "Convergence of a Scholtes-type regularization method for cardinality-constrained optimization problems with an application in sparse robust portfolio optimization," Computational Optimization and Applications, Springer, vol. 70(2), pages 503-530, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tahereh Khodamoradi & Maziar Salahi, 2023. "Extended mean-conditional value-at-risk portfolio optimization with PADM and conditional scenario reduction technique," Computational Statistics, Springer, vol. 38(2), pages 1023-1040, June.
    2. Takano, Yuichi & Gotoh, Jun-ya, 2023. "Dynamic portfolio selection with linear control policies for coherent risk minimization," Operations Research Perspectives, Elsevier, vol. 10(C).
    3. Kobayashi, Ken & Takano, Yuichi & Nakata, Kazuhide, 2023. "Cardinality-constrained distributionally robust portfolio optimization," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1173-1182.
    4. Yizun Lin & Yangyu Zhang & Zhao-Rong Lai & Cheng Li, 2024. "Autonomous Sparse Mean-CVaR Portfolio Optimization," Papers 2405.08047, arXiv.org.
    5. Vrinda Dhingra & Shiv Kumar Gupta & Amita Sharma, 2023. "Norm constrained minimum variance portfolios with short selling," Computational Management Science, Springer, vol. 20(1), pages 1-35, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuichi Takano & Keisuke Nanjo & Noriyoshi Sukegawa & Shinji Mizuno, 2015. "Cutting plane algorithms for mean-CVaR portfolio optimization with nonconvex transaction costs," Computational Management Science, Springer, vol. 12(2), pages 319-340, April.
    2. Kobayashi, Ken & Takano, Yuichi & Nakata, Kazuhide, 2023. "Cardinality-constrained distributionally robust portfolio optimization," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1173-1182.
    3. Ahmadi-Javid, Amir & Fallah-Tafti, Malihe, 2019. "Portfolio optimization with entropic value-at-risk," European Journal of Operational Research, Elsevier, vol. 279(1), pages 225-241.
    4. Amir Ahmadi-Javid & Malihe Fallah-Tafti, 2017. "Portfolio Optimization with Entropic Value-at-Risk," Papers 1708.05713, arXiv.org.
    5. L. Jeff Hong & Zhaolin Hu & Liwei Zhang, 2014. "Conditional Value-at-Risk Approximation to Value-at-Risk Constrained Programs: A Remedy via Monte Carlo," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 385-400, May.
    6. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    7. Lotfi, Somayyeh & Zenios, Stavros A., 2018. "Robust VaR and CVaR optimization under joint ambiguity in distributions, means, and covariances," European Journal of Operational Research, Elsevier, vol. 269(2), pages 556-576.
    8. Martin Branda & Max Bucher & Michal Červinka & Alexandra Schwartz, 2018. "Convergence of a Scholtes-type regularization method for cardinality-constrained optimization problems with an application in sparse robust portfolio optimization," Computational Optimization and Applications, Springer, vol. 70(2), pages 503-530, June.
    9. Takano, Yuichi & Gotoh, Jun-ya, 2023. "Dynamic portfolio selection with linear control policies for coherent risk minimization," Operations Research Perspectives, Elsevier, vol. 10(C).
    10. Salo, Ahti & Doumpos, Michalis & Liesiö, Juuso & Zopounidis, Constantin, 2024. "Fifty years of portfolio optimization," European Journal of Operational Research, Elsevier, vol. 318(1), pages 1-18.
    11. Daniel Espinoza & Eduardo Moreno, 2014. "A primal-dual aggregation algorithm for minimizing conditional value-at-risk in linear programs," Computational Optimization and Applications, Springer, vol. 59(3), pages 617-638, December.
    12. Foad Mahdavi Pajouh & Esmaeel Moradi & Balabhaskar Balasundaram, 2017. "Detecting large risk-averse 2-clubs in graphs with random edge failures," Annals of Operations Research, Springer, vol. 249(1), pages 55-73, February.
    13. Maciej Rysz & Alexander Vinel & Pavlo Krokhmal & Eduardo L. Pasiliao, 2015. "A Scenario Decomposition Algorithm for Stochastic Programming Problems with a Class of Downside Risk Measures," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 416-430, May.
    14. Juan Ma & Foad Mahdavi Pajouh & Balabhaskar Balasundaram & Vladimir Boginski, 2016. "The Minimum Spanning k -Core Problem with Bounded CVaR Under Probabilistic Edge Failures," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 295-307, May.
    15. Pengyu Qian & Zizhuo Wang & Zaiwen Wen, 2015. "A Composite Risk Measure Framework for Decision Making under Uncertainty," Papers 1501.01126, arXiv.org.
    16. Topaloglou, Nikolas & Vladimirou, Hercules & Zenios, Stavros A., 2020. "Integrated dynamic models for hedging international portfolio risks," European Journal of Operational Research, Elsevier, vol. 285(1), pages 48-65.
    17. Mohd Azdi Maasar & Diana Roman & Paresh Date, 2022. "Risk minimisation using options and risky assets," Operational Research, Springer, vol. 22(1), pages 485-506, March.
    18. Lotfi, Somayyeh & Zeniosn, Stravros A., 2016. "Equivalence of Robust VaR and CVaR Optimization," Working Papers 16-03, University of Pennsylvania, Wharton School, Weiss Center.
    19. Ran Ji & Miguel A. Lejeune, 2018. "Risk-budgeting multi-portfolio optimization with portfolio and marginal risk constraints," Annals of Operations Research, Springer, vol. 262(2), pages 547-578, March.
    20. Jun-Ya Gotoh & Keita Shinozaki & Akiko Takeda, 2013. "Robust portfolio techniques for mitigating the fragility of CVaR minimization and generalization to coherent risk measures," Quantitative Finance, Taylor & Francis Journals, vol. 13(10), pages 1621-1635, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:81:y:2021:i:2:d:10.1007_s10898-021-01048-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.