IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-00347250.html
   My bibliography  Save this paper

Estimating allocations for Value-at-Risk portfolio optimization

Author

Listed:
  • Arthur Charpentier

    (CREM - Centre de recherche en économie et management - UNICAEN - Université de Caen Normandie - NU - Normandie Université - UR - Université de Rennes - CNRS - Centre National de la Recherche Scientifique)

  • Abder Oulidi

    (MAI - Mathématiques Appliquées et Informatique - UCO - Université Catholique de l'Ouest)

Abstract

Value-at-Risk, despite being adopted as the standard risk measure in finance, suffers severe objections from a practical point of view, due to a lack of convexity, and since it does not reward diversification (which is an essential feature in portfolio optimization). Furthermore, it is also known as having poor behavior in risk estimation (which has been justified to impose the use of parametric models, but which induces then model errors). The aim of this paper is to chose in favor or against the use of VaR but to add some more information to this discussion, especially from the estimation point of view. Here we propose a simple method not only to estimate the optimal allocation based on a Value-at-Risk minimization constraint, but also to derive—empirical—confidence intervals based on the fact that the underlying distribution is unknown, and can be estimated based on past observations.

Suggested Citation

  • Arthur Charpentier & Abder Oulidi, 2009. "Estimating allocations for Value-at-Risk portfolio optimization," Post-Print halshs-00347250, HAL.
  • Handle: RePEc:hal:journl:halshs-00347250
    DOI: 10.1007/s00186-008-0244-7
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    2. Klein, Roger W. & Bawa, Vijay S., 1976. "The effect of estimation risk on optimal portfolio choice," Journal of Financial Economics, Elsevier, vol. 3(3), pages 215-231, June.
    3. Wang, Shaun, 1996. "Premium Calculation by Transforming the Layer Premium Density," ASTIN Bulletin, Cambridge University Press, vol. 26(1), pages 71-92, May.
    4. Coles, Jeffrey L. & Loewenstein, Uri, 1988. "Equilibrium pricing and portfolio composition in the presence of uncertain parameters," Journal of Financial Economics, Elsevier, vol. 22(2), pages 279-303, December.
    5. Gustafsson, J. & Hagmann, M. & Nielsen, J. P. & Scaillet, O., 2009. "Local Transformation Kernel Density Estimation of Loss Distributions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(2), pages 161-175.
    6. Kevin Dowd & David Blake, 2006. "After VaR: The Theory, Estimation, and Insurance Applications of Quantile‐Based Risk Measures," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(2), pages 193-229, June.
    7. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    8. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    9. Bawa, Vijay S., 1978. "Safety-First, Stochastic Dominance, and Optimal Portfolio Choice," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 13(2), pages 255-271, June.
    10. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    11. Kroll, Yoram & Levy, Haim & Markowitz, Harry M, 1984. "Mean-Variance versus Direct Utility Maximization," Journal of Finance, American Finance Association, vol. 39(1), pages 47-61, March.
    12. Lynn Wirch, Julia & Hardy, Mary R., 1999. "A synthesis of risk measures for capital adequacy," Insurance: Mathematics and Economics, Elsevier, vol. 25(3), pages 337-347, December.
    13. Levy, Haim & Sarnat, Marshall, 1972. "Safety First — An Expected Utility Principle," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 7(3), pages 1829-1834, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthieu Chauvigny & Laurent Devineau & Stéphane Loisel & Véronique Maume-Deschamps, 2011. "Fast remote but not extreme quantiles with multiple factors. Applications to Solvency II and Enterprise Risk Management," Post-Print hal-00517766, HAL.
    2. Alonso-Ayuso, Antonio & Carvallo, Felipe & Escudero, Laureano F. & Guignard, Monique & Pi, Jiaxing & Puranmalka, Raghav & Weintraub, Andrés, 2014. "Medium range optimization of copper extraction planning under uncertainty in future copper prices," European Journal of Operational Research, Elsevier, vol. 233(3), pages 711-726.
    3. Lwin, Khin T. & Qu, Rong & MacCarthy, Bart L., 2017. "Mean-VaR portfolio optimization: A nonparametric approach," European Journal of Operational Research, Elsevier, vol. 260(2), pages 751-766.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Huan & Mamon, Rogemar & Liu, Xiaoming, 2017. "Risk measurement of a guaranteed annuity option under a stochastic modelling framework," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 132(C), pages 100-119.
    2. Chuancun Yin & Dan Zhu, 2015. "New class of distortion risk measures and their tail asymptotics with emphasis on VaR," Papers 1503.08586, arXiv.org, revised Mar 2016.
    3. Griselda Deelstra & Michèle Vanmaele & David Vyncke, 2010. "Minimizing the Risk of a Financial Product Using a Put Option," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(4), pages 767-800, December.
    4. Leitner, Johannes, 2005. "Dilatation monotonous Choquet integrals," Journal of Mathematical Economics, Elsevier, vol. 41(8), pages 994-1006, December.
    5. Jaume Belles-Sampera & Montserrat Guillén & Miguel Santolino, 2013. "“The use of flexible quantile-based measures in risk assessment”," IREA Working Papers 201323, University of Barcelona, Research Institute of Applied Economics, revised Dec 2013.
    6. Massimiliano Amarante, 2016. "A representation of risk measures," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 39(1), pages 95-103, April.
    7. Dominique Guegan & Bertrand K Hassani, 2014. "Distortion Risk Measures or the Transformation of Unimodal Distributions into Multimodal Functions," Documents de travail du Centre d'Economie de la Sorbonne 14008, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    8. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    9. Wächter, Hans Peter & Mazzoni, Thomas, 2013. "Consistent modeling of risk averse behavior with spectral risk measures," European Journal of Operational Research, Elsevier, vol. 229(2), pages 487-495.
    10. Schuhmacher, Frank & Auer, Benjamin R., 2014. "Sufficient conditions under which SSD- and MR-efficient sets are identical," European Journal of Operational Research, Elsevier, vol. 239(3), pages 756-763.
    11. Marcelo Brutti Righi & Paulo Sergio Ceretta, 2015. "Shortfall Deviation Risk: An alternative to risk measurement," Papers 1501.02007, arXiv.org, revised May 2016.
    12. Silvana Pesenti & Sebastian Jaimungal, 2020. "Portfolio Optimisation within a Wasserstein Ball," Papers 2012.04500, arXiv.org, revised Jun 2022.
    13. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    14. Belles-Sampera, Jaume & Merigó, José M. & Guillén, Montserrat & Santolino, Miguel, 2013. "The connection between distortion risk measures and ordered weighted averaging operators," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 411-420.
    15. Haim Levy, 2010. "The CAPM is Alive and Well: A Review and Synthesis," European Financial Management, European Financial Management Association, vol. 16(1), pages 43-71, January.
    16. Frédéric Godin & Van Son Lai & Denis-Alexandre Trottier, 2019. "A general class of distortion operators for pricing contingent claims with applications to CAT bonds," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2019(7), pages 558-584, August.
    17. Boonen, Tim J., 2017. "Risk Redistribution Games With Dual Utilities," ASTIN Bulletin, Cambridge University Press, vol. 47(1), pages 303-329, January.
    18. Brandtner, Mario & Kürsten, Wolfgang, 2014. "Decision making with Conditional Value-at-Risk and spectral risk measures: The problem of comparative risk aversion," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100615, Verein für Socialpolitik / German Economic Association.
    19. Adam, Alexandre & Houkari, Mohamed & Laurent, Jean-Paul, 2008. "Spectral risk measures and portfolio selection," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1870-1882, September.
    20. van der Hoek, John & Sherris, Michael, 2001. "A class of non-expected utility risk measures and implications for asset allocations," Insurance: Mathematics and Economics, Elsevier, vol. 28(1), pages 69-82, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-00347250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.