Underground mine scheduling under uncertainty
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ejor.2021.01.011
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- King, Barry & Goycoolea, Marcos & Newman, A., 2017. "Optimizing the open pit-to-underground mining transition," European Journal of Operational Research, Elsevier, vol. 257(1), pages 297-309.
- Reus, Lorenzo & Pagnoncelli, Bernardo & Armstrong, Margaret, 2019. "Better management of production incidents in mining using multistage stochastic optimization," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
- Peter Guttorp & Tilmann Gneiting, 2006. "Studies in the history of probability and statistics XLIX On the Matern correlation family," Biometrika, Biometrika Trust, vol. 93(4), pages 989-995, December.
- Willem Klein Haneveld & Maarten van der Vlerk, 1999. "Stochastic integer programming:General models and algorithms," Annals of Operations Research, Springer, vol. 85(0), pages 39-57, January.
- Dónal O’Sullivan & Alexandra Newman, 2014. "Extraction and Backfill Scheduling in a Complex Underground Mine," Interfaces, INFORMS, vol. 44(2), pages 204-221, April.
- Demeulemeester, Erik & Herroelen, Willy, 2011. "Robust Project Scheduling," Foundations and Trends(R) in Technology, Information and Operations Management, now publishers, vol. 3(3–4), pages 201-376, January.
- Gonzalo Muñoz & Daniel Espinoza & Marcos Goycoolea & Eduardo Moreno & Maurice Queyranne & Orlando Rivera Letelier, 2018. "A study of the Bienstock–Zuckerberg algorithm: applications in mining and resource constrained project scheduling," Computational Optimization and Applications, Springer, vol. 69(2), pages 501-534, March.
- Tore Jonsbråten & Roger Wets & David Woodruff, 1998. "A class of stochastic programs withdecision dependent random elements," Annals of Operations Research, Springer, vol. 82(0), pages 83-106, August.
- Herroelen, Willy & Leus, Roel, 2005. "Project scheduling under uncertainty: Survey and research potentials," European Journal of Operational Research, Elsevier, vol. 165(2), pages 289-306, September.
- Alonso-Ayuso, Antonio & Carvallo, Felipe & Escudero, Laureano F. & Guignard, Monique & Pi, Jiaxing & Puranmalka, Raghav & Weintraub, Andrés, 2014. "Medium range optimization of copper extraction planning under uncertainty in future copper prices," European Journal of Operational Research, Elsevier, vol. 233(3), pages 711-726.
- Jeff Linderoth & Alexander Shapiro & Stephen Wright, 2006. "The empirical behavior of sampling methods for stochastic programming," Annals of Operations Research, Springer, vol. 142(1), pages 215-241, February.
- R. Schultz & L. Stougie & M. H. van der Vlerk, 1996. "Two‐stage stochastic integer programming: a survey," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 50(3), pages 404-416, November.
- Lewis Ntaimo, 2010. "Disjunctive Decomposition for Two-Stage Stochastic Mixed-Binary Programs with Random Recourse," Operations Research, INFORMS, vol. 58(1), pages 229-243, February.
- Soutir Bandyopadhyay & Suhasini Subba Rao, 2017. "A test for stationarity for irregularly spaced spatial data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 95-123, January.
- W. Matthew Carlyle & B. Curtis Eaves, 2001. "Underground Planning at Stillwater Mining Company," Interfaces, INFORMS, vol. 31(4), pages 50-60, August.
- Del Castillo, M. Fernanda & Dimitrakopoulos, Roussos, 2019. "Dynamically optimizing the strategic plan of mining complexes under supply uncertainty," Resources Policy, Elsevier, vol. 60(C), pages 83-93.
- Morteza Davari & Erik Demeulemeester, 2019. "Important classes of reactions for the proactive and reactive resource-constrained project scheduling problem," Annals of Operations Research, Springer, vol. 274(1), pages 187-210, March.
- Newman, Alexandra M. & Kuchta, Mark, 2007. "Using aggregation to optimize long-term production planning at an underground mine," European Journal of Operational Research, Elsevier, vol. 176(2), pages 1205-1218, January.
- Morteza Davari & Erik Demeulemeester, 2019. "The proactive and reactive resource-constrained project scheduling problem," Journal of Scheduling, Springer, vol. 22(2), pages 211-237, April.
- Lamghari, Amina & Dimitrakopoulos, Roussos, 2012. "A diversified Tabu search approach for the open-pit mine production scheduling problem with metal uncertainty," European Journal of Operational Research, Elsevier, vol. 222(3), pages 642-652.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zeng, Lanyan & Liu, Shi Qiang & Kozan, Erhan & Corry, Paul & Masoud, Mahmoud, 2021. "A comprehensive interdisciplinary review of mine supply chain management," Resources Policy, Elsevier, vol. 74(C).
- Lamas, Patricio & Goycoolea, Marcos & Pagnoncelli, Bernardo & Newman, Alexandra, 2024. "A target-time-windows technique for project scheduling under uncertainty," European Journal of Operational Research, Elsevier, vol. 314(2), pages 792-806.
- Furtado e Faria, Matheus & Dimitrakopoulos, Roussos & Lopes Pinto, Cláudio Lúcio, 2022. "Integrated stochastic optimization of stope design and long-term underground mine production scheduling," Resources Policy, Elsevier, vol. 78(C).
- Yifei Zhao & Jianhong Chen & Shan Yang & Yi Chen, 2022. "Mining Plan Optimization of Multi-Metal Underground Mine Based on Adaptive Hybrid Mutation PSO Algorithm," Mathematics, MDPI, vol. 10(14), pages 1-20, July.
- Chimunhu, Prosper & Topal, Erkan & Ajak, Ajak Duany & Asad, Waqar, 2022. "A review of machine learning applications for underground mine planning and scheduling," Resources Policy, Elsevier, vol. 77(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Farnaz Torabi Yeganeh & Seyed Hessameddin Zegordi, 2020. "A multi-objective optimization approach to project scheduling with resiliency criteria under uncertain activity duration," Annals of Operations Research, Springer, vol. 285(1), pages 161-196, February.
- O’Sullivan, Dónal & Newman, Alexandra, 2015. "Optimization-based heuristics for underground mine scheduling," European Journal of Operational Research, Elsevier, vol. 241(1), pages 248-259.
- King, Barry & Goycoolea, Marcos & Newman, A., 2017. "Optimizing the open pit-to-underground mining transition," European Journal of Operational Research, Elsevier, vol. 257(1), pages 297-309.
- Zeng, Lanyan & Liu, Shi Qiang & Kozan, Erhan & Corry, Paul & Masoud, Mahmoud, 2021. "A comprehensive interdisciplinary review of mine supply chain management," Resources Policy, Elsevier, vol. 74(C).
- Balouka, Noemie & Cohen, Izack, 2021. "A robust optimization approach for the multi-mode resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 291(2), pages 457-470.
- Maziar Khoshsirat & Seyed Meysam Mousavi, 2024. "A new proactive and reactive approach for resource-constrained project scheduling problem under activity and resource disruption: a scenario-based robust optimization approach," Annals of Operations Research, Springer, vol. 338(1), pages 597-643, July.
- Morteza Davari & Erik Demeulemeester, 2019. "The proactive and reactive resource-constrained project scheduling problem," Journal of Scheduling, Springer, vol. 22(2), pages 211-237, April.
- Lamas, Patricio & Goycoolea, Marcos & Pagnoncelli, Bernardo & Newman, Alexandra, 2024. "A target-time-windows technique for project scheduling under uncertainty," European Journal of Operational Research, Elsevier, vol. 314(2), pages 792-806.
- Hongbo Li & Linwen Zheng & Hanyu Zhu, 2023. "Resource leveling in projects with flexible structures," Annals of Operations Research, Springer, vol. 321(1), pages 311-342, February.
- Gonzalo Muñoz & Daniel Espinoza & Marcos Goycoolea & Eduardo Moreno & Maurice Queyranne & Orlando Rivera Letelier, 2018. "A study of the Bienstock–Zuckerberg algorithm: applications in mining and resource constrained project scheduling," Computational Optimization and Applications, Springer, vol. 69(2), pages 501-534, March.
- Majid Askarifard & Hamidreza Abbasianjahromi & Mehran Sepehri & Ehsanollah Zeighami, 2021. "A robust multi-objective optimization model for project scheduling considering risk and sustainable development criteria," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11494-11524, August.
- Lorenzo Reus & Mathias Belbèze & Hans Feddersen & Enrique Rubio, 2018. "Extraction Planning Under Capacity Uncertainty at the Chuquicamata Underground Mine," Interfaces, INFORMS, vol. 48(6), pages 543-555, November.
- Brian Keller & Güzin Bayraksan, 2012. "Disjunctive Decomposition for Two-Stage Stochastic Mixed-Binary Programs with Generalized Upper Bound Constraints," INFORMS Journal on Computing, INFORMS, vol. 24(1), pages 172-186, February.
- Shichang Xiao & Shudong Sun & Jionghua (Judy) Jin, 2017. "Surrogate Measures for the Robust Scheduling of Stochastic Job Shop Scheduling Problems," Energies, MDPI, vol. 10(4), pages 1-26, April.
- Akshay Chowdu & Peter Nesbitt & Andrea Brickey & Alexandra M. Newman, 2022. "Operations Research in Underground Mine Planning: A Review," Interfaces, INFORMS, vol. 52(2), pages 109-132, March.
- Gilani, Seyyed-Omid & Sattarvand, Javad & Hajihassani, Mohsen & Abdullah, Shahrum Shah, 2020. "A stochastic particle swarm based model for long term production planning of open pit mines considering the geological uncertainty," Resources Policy, Elsevier, vol. 68(C).
- Wiesemann, Wolfram & Kuhn, Daniel & Rustem, Berç, 2010. "Maximizing the net present value of a project under uncertainty," European Journal of Operational Research, Elsevier, vol. 202(2), pages 356-367, April.
- Furtado e Faria, Matheus & Dimitrakopoulos, Roussos & Lopes Pinto, Cláudio Lúcio, 2022. "Integrated stochastic optimization of stope design and long-term underground mine production scheduling," Resources Policy, Elsevier, vol. 78(C).
- Zuo, Fei & Zio, Enrico & Xu, Yue, 2023. "Bi-objective optimization of the scheduling of risk-related resources for risk response," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
- Marco Schulze & Julia Rieck & Cinna Seifi & Jürgen Zimmermann, 2016. "Machine scheduling in underground mining: an application in the potash industry," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(2), pages 365-403, March.
More about this item
Keywords
OR in natural resources; Stochastic integer programming; Optimization-based heuristics; Project scheduling; Underground mining;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:294:y:2021:i:1:p:340-352. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.