IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v179y2007i2p459-468.html
   My bibliography  Save this article

A hyperspherical transformation forecasting model for compositional data

Author

Listed:
  • Wang, Huiwen
  • Liu, Qiang
  • Mok, Henry M.K.
  • Fu, Linghui
  • Tse, Wai Man

Abstract

No abstract is available for this item.

Suggested Citation

  • Wang, Huiwen & Liu, Qiang & Mok, Henry M.K. & Fu, Linghui & Tse, Wai Man, 2007. "A hyperspherical transformation forecasting model for compositional data," European Journal of Operational Research, Elsevier, vol. 179(2), pages 459-468, June.
  • Handle: RePEc:eee:ejores:v:179:y:2007:i:2:p:459-468
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(06)00240-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geweke, John & Keane, Michael P & Runkle, David, 1994. "Alternative Computational Approaches to Inference in the Multinomial Probit Model," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 609-632, November.
    2. Jane Fry & Tim Fry & Keith McLaren, 2000. "Compositional data analysis and zeros in micro data," Applied Economics, Taylor & Francis Journals, vol. 32(8), pages 953-959.
    3. Noel Capon & John U. Farley & Scott Hoenig, 1990. "Determinants of Financial Performance: A Meta-Analysis," Management Science, INFORMS, vol. 36(10), pages 1143-1159, October.
    4. Allan G. B. Fisher, 1939. "Production, Primary, Secondary And Tertiary," The Economic Record, The Economic Society of Australia, vol. 15(1), pages 24-38, June.
    5. Keane, Michael P, 1992. "A Note on Identification in the Multinomial Probit Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(2), pages 193-200, April.
    6. Billheimer D. & Guttorp P. & Fagan W.F., 2001. "Statistical Interpretation of Species Composition," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1205-1214, December.
    7. Katz, Jonathan N. & King, Gary, 1999. "A Statistical Model for Multiparty Electoral Data," American Political Science Review, Cambridge University Press, vol. 93(1), pages 15-32, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rao, Congjun & Zhang, Yue & Wen, Jianghui & Xiao, Xinping & Goh, Mark, 2023. "Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model," Energy, Elsevier, vol. 263(PC).
    2. Terence C. Mills, 2009. "Forecasting obesity trends in England," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 107-117, January.
    3. Javier Palarea-Albaladejo & Josep Martín-Fernández & Jesús Soto, 2012. "Dealing with Distances and Transformations for Fuzzy C-Means Clustering of Compositional Data," Journal of Classification, Springer;The Classification Society, vol. 29(2), pages 144-169, July.
    4. Yigang Wei & Zhichao Wang & Huiwen Wang & Yan Li & Zhenyu Jiang, 2019. "Predicting population age structures of China, India, and Vietnam by 2030 based on compositional data," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-42, April.
    5. Wang, Dieter & Andrée, Bo Pieter Johannes & Chamorro, Andres Fernando & Spencer, Phoebe Girouard, 2022. "Transitions into and out of food insecurity: A probabilistic approach with panel data evidence from 15 countries," World Development, Elsevier, vol. 159(C).
    6. Zhang, Kai & Yin, Kedong & Yang, Wendong, 2022. "Predicting bioenergy power generation structure using a newly developed grey compositional data model: A case study in China," Renewable Energy, Elsevier, vol. 198(C), pages 695-711.
    7. Joscha Krause & Jan Pablo Burgard & Domingo Morales, 2022. "Robust prediction of domain compositions from uncertain data using isometric logratio transformations in a penalized multivariate Fay–Herriot model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(1), pages 65-96, February.
    8. Joanna Morais & Christine Thomas-Agnan & Michel Simioni, 2018. "Using compositional and Dirichlet models for market share regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(9), pages 1670-1689, July.
    9. Raharjo, Hendry & Xie, Min & Brombacher, Aarnout C., 2009. "On modeling dynamic priorities in the analytic hierarchy process using compositional data analysis," European Journal of Operational Research, Elsevier, vol. 194(3), pages 834-846, May.
    10. Chuanbin Zhou & Shijun Ma & Xiao Yu & Zhuqi Chen & Jingru Liu & Li Yan, 2022. "A comparison study of bottom‐up and top‐down methods for analyzing the physical composition of municipal solid waste," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 240-251, February.
    11. M. Templ & K. Hron & P. Filzmoser, 2017. "Exploratory tools for outlier detection in compositional data with structural zeros," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(4), pages 734-752, March.
    12. Colignatus, Thomas, 2018. "Comparing the Aitchison distance and the angular distance for use as inequality or disproportionality measures for votes and seats," MPRA Paper 84334, University Library of Munich, Germany, revised 03 Feb 2018.
    13. Morais, Joanna & Simioni, Michel & Thomas-Agnan, Christine, 2016. "A tour of regression models for explaining shares," TSE Working Papers 16-742, Toulouse School of Economics (TSE).
    14. Wang,Dieter & Andree,Bo Pieter Johannes & Chamorro Elizondo,Andres Fernando & Spencer,Phoebe Girouard, 2020. "Stochastic Modeling of Food Insecurity," Policy Research Working Paper Series 9413, The World Bank.
    15. Huiwen Wang & Liying Shangguan & Rong Guan & Lynne Billard, 2015. "Principal component analysis for compositional data vectors," Computational Statistics, Springer, vol. 30(4), pages 1079-1096, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Terence Mills, 2010. "Forecasting compositional time series," Quality & Quantity: International Journal of Methodology, Springer, vol. 44(4), pages 673-690, June.
    2. Haaijer, Marinus E., 1996. "Predictions in conjoint choice experiments : the x-factor probit model," Research Report 96B22, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    3. Siddhartha Chib & Edward Greenberg & Yuxin Chen, 1998. "MCMC Methods for Fitting and Comparing Multinomial Response Models," Econometrics 9802001, University Library of Munich, Germany, revised 06 May 1998.
    4. Rennings, Klaus & Ziegler, Andreas, 2004. "Determinants of Environmental Innovations in Germany: Do Organizational Measures Matter? A Discrete Choice Analysis at the Firm Level," ZEW Discussion Papers 04-30, ZEW - Leibniz Centre for European Economic Research.
    5. Rennings, Klaus & Ziegler, Andreas & Zwick, Thomas, 2001. "Employment changes in environmentally innovative firms," ZEW Discussion Papers 01-46, ZEW - Leibniz Centre for European Economic Research.
    6. Ricardo A. Daziano & Martin Achtnicht, 2014. "Forecasting Adoption of Ultra-Low-Emission Vehicles Using Bayes Estimates of a Multinomial Probit Model and the GHK Simulator," Transportation Science, INFORMS, vol. 48(4), pages 671-683, November.
    7. Tobias Müller & Stefan Boes, 2020. "Disability insurance benefits and labor supply decisions: evidence from a discontinuity in benefit awards," Empirical Economics, Springer, vol. 58(5), pages 2513-2544, May.
    8. Patrick Waelbroeck, 2005. "Computational Issues in the Sequential Probit Model: A Monte Carlo Study," Computational Economics, Springer;Society for Computational Economics, vol. 26(2), pages 141-161, October.
    9. Wesley Wehde & Matthew C Nowlin, 2021. "Public Attribution of Responsibility for Disaster Preparedness across Three Levels of Government and the Public: Lessons from a Survey of Residents of the U.S. South Atlantic and Gulf Coast," Publius: The Journal of Federalism, CSF Associates Inc., vol. 51(2), pages 212-237.
    10. Piatek, Rémi & Gensowski, Miriam, 2017. "A Multinomial Probit Model with Latent Factors: Identification and Interpretation without a Measurement System," IZA Discussion Papers 11042, Institute of Labor Economics (IZA).
    11. van Dijk, Bram & Paap, Richard, 2008. "Explaining individual response using aggregated data," Journal of Econometrics, Elsevier, vol. 146(1), pages 1-9, September.
    12. Ziegler Andreas, 2010. "Z-Tests in Multinomial Probit Models under Simulated Maximum Likelihood Estimation: Some Small Sample Properties," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 230(5), pages 630-652, October.
    13. John Geweke & Michael P. Keane, 1997. "Mixture of normals probit models," Staff Report 237, Federal Reserve Bank of Minneapolis.
    14. Michael P. Keane, 2013. "Panel data discrete choice models of consumer demand," Economics Papers 2013-W08, Economics Group, Nuffield College, University of Oxford.
    15. Canaviri, Jose, 2007. "A Random Parameter Logit model for modeling Health Care Provider Choice in Bolivia," MPRA Paper 3263, University Library of Munich, Germany.
    16. Ricardo Smith Ramírez, 2007. "FIML estimation of treatment effect models with endogenous selection and multiple censored responses via a Monte Carlo EM Algorithm," Working Papers DTE 403, CIDE, División de Economía.
    17. Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2020. "A Bayesian Dynamic Compositional Model for Large Density Combinations in Finance," Working Paper series 20-27, Rimini Centre for Economic Analysis.
    18. Harris, Katherine M. & Keane, Michael P., 1998. "A model of health plan choice:: Inferring preferences and perceptions from a combination of revealed preference and attitudinal data," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 131-157, November.
    19. Rinus Haaijer & Michel Wedel & Marco Vriens & Tom Wansbeek, 1998. "Utility Covariances and Context Effects in Conjoint MNP Models," Marketing Science, INFORMS, vol. 17(3), pages 236-252.
    20. Juan José Egozcue & Vera Pawlowsky-Glahn, 2019. "Compositional data: the sample space and its structure," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 599-638, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:179:y:2007:i:2:p:459-468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.